Skip to main content

Compressed Network Complexity Search

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7491))

Abstract

Indirect encoding schemes for neural network phenotypes can represent large networks compactly. In previous work, we presented a new approach where networks are encoded indirectly as a set of Fourier-type coefficients that decorrelate weight matrices such that they can often be represented by a small number of genes, effectively reducing the search space dimensionality, and speed up search. Up to now, the complexity of networks using this encoding was fixed a priori, both in terms of (1) the number of free parameters (topology) and (2) the number of coefficients. In this paper, we introduce a method, called Compressed Network Complexity Search (CNCS), for automatically determining network complexity that favors parsimonious solutions. CNCS maintains a probability distribution over complexity classes that it uses to select which class to optimize. Class probabilities are adapted based on their expected fitness. Starting with a prior biased toward the simplest networks, the distribution grows gradually until a solution is found. Experiments on two benchmark control problems, including a challenging non-linear version of the helicopter hovering task, demonstrate that the method consistently finds simple solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbeel, P., Ganapathi, V., Ng, A.Y.: Learning vehicular dynamics, with application to modeling helicopters. In: NIPS (2005)

    Google Scholar 

  2. Dürr, P., Mattiussi, C., Floreano, D.: Neuroevolution with Analog Genetic Encoding. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 671–680. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Gruau, F.: Cellular encoding of genetic neural networks. Technical Report RR-92-21, Ecole Normale Superieure de Lyon, Institut IMAG, Lyon, France (1992)

    Google Scholar 

  4. Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4, 461–476 (1990)

    MATH  Google Scholar 

  5. Koutník, J., Gomez, F., Schmidhuber, J.: Evolving neural networks in compressed weight space. In: Proceedings of the Conference on Genetic and Evolutionary Computation, GECCO 2010 (2010)

    Google Scholar 

  6. Koutník, J., Gomez, F., Schmidhuber, J.: Searching for minimal neural networks in fourier space. In: Proc. of the 4th Conf. on Artificial General Intelligence (2010)

    Google Scholar 

  7. Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)

    Google Scholar 

  8. Parzen, E.: On estimation of a probability density function and mode. The Annals of Mathematical Statistics 33(3), 1065–1076 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  9. Schmidhuber, J.: Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks 10(5), 857–873 (1997)

    Article  Google Scholar 

  10. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting topologies. Evolutionary Computation 10, 99–127 (2002)

    Article  Google Scholar 

  11. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)

    Article  Google Scholar 

  12. Wierstra, D., Schaul, T., Peters, J., Schmidhuber, J.: Natural Evolution Strategies. In: Proceedings of the Congress on Evolutionary Computation (CEC 2008), Hongkong. IEEE Press (2008)

    Google Scholar 

  13. Wierstra, D., Schaul, T., Sun, T.G.Y., Schmidhuber, J.: Natural evolution strategies. Technical report (2011), arXiv:1106.4487v1

    Google Scholar 

  14. Woolley, B.G., Stanley, K.O.: Evolving a Single Scalable Controller for an Octopus Arm with a Variable Number of Segments. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN XI. LNCS, vol. 6239, pp. 270–279. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Zhang, B.-T., Muhlenbein, H.: Evolving optimal neural networks using genetic algorithms with Occam’s razor. Complex Systems 7, 199–220 (1993)

    Google Scholar 

  16. Zhang, B.-T., Muhlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3, 17–38 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gomez, F., Koutník, J., Schmidhuber, J. (2012). Compressed Network Complexity Search. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds) Parallel Problem Solving from Nature - PPSN XII. PPSN 2012. Lecture Notes in Computer Science, vol 7491. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32937-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32937-1_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32936-4

  • Online ISBN: 978-3-642-32937-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics