Skip to main content

Application of Reactivity Indices Within Density Functional Theory to Rationale Chemical Interactions

  • Chapter
  • First Online:
Applications of Density Functional Theory to Chemical Reactivity

Part of the book series: Structure and Bonding ((STRUCTURE,volume 149))

  • 1704 Accesses

Abstract

Chemistry is the science based on that all process involving bond making and bond breaking. Chemical interactions will determine the activity of the interacting species. If this reaction process can be mimicked by a handy and simple theory to test the validity this can be revolutionary. Reactivity index is that theory which was developed at the right time to rationalize chemical bonding. Density functional theory (DFT) has given precision to chemical concepts such as electronegativity, hardness, and softness and has embedded them in a perturbation approach to chemical reactivity. Since the majority of the reactions can be analyzed through the electrophilicity/nucleophilicity of various species involved, a proper understanding of these properties becomes essential. The hard soft acid–base (HSAB) principles classify the interaction between acids and bases in terms of global softness. In last few years the reactivity index methodology is well established and had found its application in a wide variety of systems. This study is to revisit the definition of reactivity index using DFT, within the domain of HSAB principle and then to discuss its application to rationale chemical interactions; in combination with intra- and intermolecular reactivity in materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bronsted JN (1923) Some remarks on the concept of acids and bases, Recueil des Travaux Chimiques des Pays-Bas Volume 42:718–728

    Google Scholar 

  2. Lewis GN (1916) The atom and the molecule. J Am Chem Soc 38:762–785

    Article  CAS  Google Scholar 

  3. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  4. Pearson RG (1985) Absolute electronegativity and absolute hardness of Lewis acids and bases. J Am Chem Soc 107:6801–6806

    Article  CAS  Google Scholar 

  5. Pearson RG (1986) Absolute electronegativity and hardness correlated with molecular orbital Theory. Proc Natl Acad Sci USA 83:8440–8441

    Article  CAS  Google Scholar 

  6. Pearson RG (1987) Recent advances in the concept of hard and soft acids and bases. J Chem Edu 64:561–567

    Article  CAS  Google Scholar 

  7. Pearson RG (1988) Absolute electronegativity and hardness: Application to inorganic chemistry. Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  8. Pearson RG (1989) Absolute electronegativity and hardness: Application to organic chemistry. Org Chem 54:1423–1430

    Article  CAS  Google Scholar 

  9. Pearson RG (1997) Chemical Hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  10. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  11. Putz M.V., (2003) Contributions within Density Functional Theory with Applications in chemical reactivity theory and electronegativity, Dissertation. Com, Parkland, Florida

    Google Scholar 

  12. Parr RG, Pearson RG (1983) Absolute hardness: Companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  13. Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. Struct Bond 80:11–25

    Article  CAS  Google Scholar 

  14. Parr RG, Gázquez JL (1993) Hardness functional. J Phys Chem 97:3939–3940

    Article  CAS  Google Scholar 

  15. Zhou Z, Parr RG (1990) Activation hardness: New index for describing the orientation of electrophilic aromatic substitution. J Am Chem Soc 112:5720–5724

    Article  CAS  Google Scholar 

  16. Drago RS, Kabler RA (1972) A Quantitative evaluation of the HSAB concept. Inorg Chem 11:3144–3145

    Article  CAS  Google Scholar 

  17. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  18. Nalewajski RF (1984) Electrostatic effects in interaction between hard (soft) acids and bases. J Am Chem Soc 106:944–945

    Article  CAS  Google Scholar 

  19. Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16129–16130

    Article  Google Scholar 

  20. Komorowski L, Boyd SL, Boyd RJ (1996) Electronegativity and hardness of disjoint and transferable molecular fragments. J Phys Chem 100:3448–3453

    Article  CAS  Google Scholar 

  21. Ponti A (2000) DFT-based regioselectivity criteria for cycloaddition reaction. J Phys Chem 104:8843–8846

    Article  CAS  Google Scholar 

  22. Chandrakumar KRS, Pal S (2002) Study of local hard-soft acid–base principle to multiple-site interactions. J Phys Chem A 106:5737–5744

    Article  CAS  Google Scholar 

  23. Chandrakumar KRS, Pal S (2002) A systematic study of the reactivity of Lewis acid–base complexes through the local hard-soft acid–base principle. J Phys Chem A 106:11775–11781

    Article  CAS  Google Scholar 

  24. Chandrakumar KRS, Pal S (2002) Study of local hard-soft acid–base principle: Effects of basis set, electron correlation, and the electron partitioning method. J Phys Chem A 107:5755–5762

    Article  CAS  Google Scholar 

  25. Chattaraj PK, Maiti B (2003) HSAB principle applied to the time evolution of chemical reactions. J Am Chem Soc 125:2705–2710

    Article  CAS  Google Scholar 

  26. Putz MV, Russo N, Sicilia E (2004) On the application of the HSAB principle through the use of improved computational schemes for chemical hardness evaluation. J Comput Chem 25:994–1003

    Article  CAS  Google Scholar 

  27. Torrent-Sucarrat M, Luis JM, Duran M, Solà M (2005) An assessment of a simple hardness kernel approximation for the calculation of the global hardness in a series of Lewis acids and bases. J Mol Struct (THEOCHEM) 727:139–148

    Article  CAS  Google Scholar 

  28. Kleinert H, Pelster A, Putz MV (2002) Variational perturbation theory for Markov processes. Phys Rev E 65:066128

    Article  CAS  Google Scholar 

  29. Putz MV, Russo N, Sicilia E (2003) Atomic radii scale and related size properties from density functional electronegativity formulation. J Phys Chem A 107:5461–5465

    Article  CAS  Google Scholar 

  30. Putz MV (2005) Markovian approach of the electron localization functions. Int J Quantum Chem 105:1–11

    Article  CAS  Google Scholar 

  31. Putz MV (2006) Systematic formulations for electronegativity and hardness and their atomic scales within density functional softness theory. Int J Quantum Chem 106:361–389

    Article  CAS  Google Scholar 

  32. Putz MV (2007) Semiclassical electronegativity and chemical hardness. J Theor Comp Chem 6:33–47

    Article  CAS  Google Scholar 

  33. Putz MV (2008) Maximum hardness index of quantum acid–base bonding. Math Commun Math Comput Chem 60:845–868

    Google Scholar 

  34. Putz MV (2009) Electronegativity: quantum observable. Int J Quantum Chem 109:733–738

    Article  CAS  Google Scholar 

  35. Carey FA, Sundberg RJ (2001) Adv Org Chem; Part B: reactions and synthesis, 4th ed.; Kluwer Academic/Plenum Publishers: New York

    Google Scholar 

  36. Lowry TH, Richardson KS (1987) Mechanism and theory in organic chemistry, 3rd edn. Harper & Row, New York

    Google Scholar 

  37. Smith MB, March J (2001) Advanced organic chemistry: reactions, mechanisms, and structure, 5th edn. Wiley, New York

    Google Scholar 

  38. Sykes P (1970) A guidebook to mechanism in organic chemistry, 6th edn. Orient Longman Limited, New Delhi

    Google Scholar 

  39. Parr RG, Szentpaly LV, Liu S (1999) Electrophillicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  40. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci U S A 95:11578–11583

    Article  CAS  Google Scholar 

  41. Fukui K (1973) Theory of orientation and stereoselection. Springer, Berlin

    Google Scholar 

  42. Fukui K (1982) Role of frontier orbital in chemical reactions. Science 218:747–754

    Article  CAS  Google Scholar 

  43. Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050

    Article  CAS  Google Scholar 

  44. Chattaraj PK, Poddar A (1999) Chemical reactivity and excited-state density functional theory. J Phys Chem A 103:1274–1275

    Article  CAS  Google Scholar 

  45. Geerlings P, De Proft F (2000) HSAB principle: Applications of its global and local forms in organic chemistry. Int J Quantum Chem 80:227–235

    Article  CAS  Google Scholar 

  46. Ayers PW, Levy M (2000) Perspective on density functional approach to the frontier-electron theory of chemical reactivity. Theor Chem Acc 103:353–360

    Article  CAS  Google Scholar 

  47. Baeten A, Tafazoli M, Kirsch-Volders M, Geerlings P (1999) Use of the HSAB principle in quantitative structure-activity relationships in toxicological research: Application to the genotoxicity of chlorinated hydrocarbons. Int J Quantum Chem 74:351–355

    Article  CAS  Google Scholar 

  48. Mendez FDL, Romero M, De Proft F, Geerlings P (1998) The basicity of p-substituted phenolates and the elimination-substitution ratio in p-nitrophenethyl bromide: A HSAB theoretical study. J Org Chem 63:5774–5778

    Article  CAS  Google Scholar 

  49. Mendez F, Tamariz J, Geerlings P (1998) 1,3-dipolar cycloaddition reactions: A DFT and HSAB principle theoretical model J. Phys Chem A 102:6292–6296

    Article  CAS  Google Scholar 

  50. Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: A perspective based on half-reactions. J Chem Phys 124:194107

    Article  CAS  Google Scholar 

  51. Ayers PW (2005) An elementary derivation of the hard/soft acid/base principle. J Chem Phys 122:1–3

    Article  CAS  Google Scholar 

  52. Ayers PW (2007) The physical basis of the global and local hard/soft acid/base principles. Faraday Discuss 135:161–190

    Article  CAS  Google Scholar 

  53. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  54. Chattaraj PK (1996) Proc Ind Natl Sci Acad Part A 62:513

    CAS  Google Scholar 

  55. Chattaraj PK, Parr RG (1993) Struct Bonding (Berlin) 80:11

    CAS  Google Scholar 

  56. Ayers PW, Parr RG (2000) Variational principles for describing chemical reactions: The Fukui function and chemical hardness revisited. J Am Chem Soc 122:2010–2018

    Article  CAS  Google Scholar 

  57. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2002) Are the maximum hardness and minimum polarizability principles always obeyed in nontotally symmetric vibrations? J Chem Phys 117:10561–10570

    Article  CAS  Google Scholar 

  58. Torrent-Sucarrat M, Luis JM, Duran M, Sola M (2001) On the validity of the maximum hardness and minimum polarizability principles for nontotally symmetric vibrations. J Am Chem Soc 123:7951–7952

    Article  CAS  Google Scholar 

  59. Robles J, Bartolotti LJ (1984) Electronegativities, electron-affinities, ionization potentials and hardness of the elements within spin polarized density functional theory. J Am Chem Soc 106:3723–3727

    Article  CAS  Google Scholar 

  60. Parr RG, Yang WT (1995) Density functional theory of the electronic-structure of molecules. Ann Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  61. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  62. Pearson RG (1988) Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 27:734–737

    Article  CAS  Google Scholar 

  63. Parr RG, Yang WT (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  64. Vela A, Gazquez JL (1990) A relationship between the static dipole polarizability, the global softness and the Fukui function. J Am Chem Soc 112:1490–1492

    Article  CAS  Google Scholar 

  65. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  66. Chattaraj PK, Giri S, Duley S (2011) Chem Rev 111:43–75

    Article  Google Scholar 

  67. Ayers PW, Anderson JSM, Bartolotti LJ (2005) Perturbative perspectives on the chemical reaction prediction problem. Int J Quantum Chem 101:520–534

    Article  CAS  Google Scholar 

  68. Chatterjee A, Iwasaki T, Ebina T (1999) Reactivity index scale for interaction of heteroatomic molecules with zeolite framework. J Phys Chem A 103:2489–2494

    Article  CAS  Google Scholar 

  69. Chatterjee A, Iwasaki T, Ebina T (2001) Best dioctahedral smectite for nitrogen heterocyclics adsorption—A reactivity index study. J Phys Chem A 105:10694–10701

    Article  CAS  Google Scholar 

  70. Chatterjee A, Iwasaki T (2001) A reactivity index study to choose the best template for a particular zeolite synthesis. J Phys Chem A 105:6187–6194

    Article  CAS  Google Scholar 

  71. Chatterjee A, Iwasaki T, Ebina T, Mizukami F (2003) Intermolecular reactivity studyto scaleadsorptionproperty of para- and meta-substituted dnitrobenzene over 2: 1 dioctahedral smectite. J Chem Phys 118:10212–10220

    Article  CAS  Google Scholar 

  72. Chatterjee A, Onodera Y, Ebina T, Mizukami F (2003) 2,3,7,8-tetrachloro dibenzo-p-dioxin can be successfully decomposed over 2: 1 dioctahedral smectite—a reactivity index study. J Mol Graph Model 22:93–104

    Article  CAS  Google Scholar 

  73. Chatterjee A, Suzuki T, Onodera Y, Tanaka DAP (2003) A density functional study to choose the best fluorophore for photon-induced electron-transfer (PET) sensors. Chem Eur J 9:3920–3929

    Article  CAS  Google Scholar 

  74. Serrano-Andres L, Merchan M (2005) Quantum chemistry of the excited state: 2005 overview. J Mol Struct Theochem 729:99–108

    Article  CAS  Google Scholar 

  75. Fitzerald G (2008) Molecular simulation, 34, (10–15):931–936

    Google Scholar 

  76. Kresse G, Furthmuller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Math Sci 6:15–50

    Article  CAS  Google Scholar 

  77. Rabuck AD, Scuseria GE (1999) Improving self-consistent field convergence by varying occupation numbers. J Chem Phys 110:695–700

    Article  CAS  Google Scholar 

  78. Roy RK, Krishnamurti S, Geerlings P, Pal S (1998) Local softness and hardness based reactivity descriptors for predicting intra- and intermolecular reactivity sequences: Carbonyl compounds. J Phys Chem A 102:3746–3755

    Article  CAS  Google Scholar 

  79. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  80. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  81. Delley B (1991) Analytical energy derivatives in the numerical local density functional approach. J Chem Phys 94:7245–7250

    Article  CAS  Google Scholar 

  82. Becke AD (1988) A multicenter numerical-integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553

    Article  CAS  Google Scholar 

  83. Lee CT, Yang WT, ParrR G (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  84. Chatterjee A, Onodera Y, Ebina T, Mizukami F (2004) Effect of exchangeable cation on the swelling property of 2: 1 dioctahedral smectite—a periodic first principle study. J Chem Phys 120:3414–3424

    Article  CAS  Google Scholar 

  85. Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814

    Article  CAS  Google Scholar 

  86. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711

    Article  CAS  Google Scholar 

  87. Chatterjee A (2002) Edited the special issue on application of density functional theory in chemical reactions. Int J Mol Sci 4:234–444

    Article  Google Scholar 

  88. Chatterjee A, Ebina T, Iwasaki T (2003) Adsorption structures and energetic of fluoro- and chlorofluorocarbons over faujasite—a first principle study. Stud Surf Sci Catal 145:371–374

    Article  CAS  Google Scholar 

  89. Chatterjee A, Ebina T, Iwasaki T, Mizukami F (2003) Cholorofluorocarbons adsorption structures and energetic over faujasite type zeolites—a first principle study. THEOCHEM 630:233–242

    Article  CAS  Google Scholar 

  90. Chatterjee A, Ebina T, Mizukami F (2005) Effects of water on the structure and bonding of resorcinol in the interlayer of montmorillonite nanocomposite—a periodic first principle study. J Phys Chem B 109:7306–7313

    Article  CAS  Google Scholar 

  91. Chatterjee A (2006) A reactivity index study to rationalize the effect of dopants on Brönsted and Lewis acidity occurring in MeAlPOs. J Mol Graph Model 24:262–270

    Article  CAS  Google Scholar 

  92. Saadoune I, Cora F, Catlow CRA (2003) Computational study of the structural and electronic properties of dopant ions in microporous AlPOs. 1. Acid catalytic activity of divalent metal ions. J Phys Chem B 107:3003–3011

    Article  CAS  Google Scholar 

  93. Chatterjee A, Balaji T, Matsunaga H, Mizukami F (2006) A reactivity index study to monitor the role of solvation on the interaction of the chromophores with amino-functional silanol surface for colorimetric sensors. J Mol Graph Model 25:208–218

    Article  CAS  Google Scholar 

  94. Chatterjee A, Kawazoe A (2007) Application of the reactivity index to propose intra and intermolecular reactivity in metal cluster interaction over oxide surface. Mater Trans 48:2152–2158

    Article  CAS  Google Scholar 

  95. Maynard AT, Huang M, Rice WG, Covell DG (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci USA 95:11578–11583

    Article  CAS  Google Scholar 

  96. Renato C, Alzate-Morales JH, William T, Santos Juan C, Ca’rdenas C (2007) AQ4 Theoretical study on CDK2 inhibitors using a global softness obtained from the density of states. J Phys Chem B 111:3293–3297

    Article  CAS  Google Scholar 

  97. Vleeschouwer FD, Toro-Labbe A, Gutie´rrez-Oliva S, Speybroeck V, Waroquier M, Geerlings P, De Proft F (2009) Reversibility from DFT-based reactivity indices: intramolecular side reactions in the polymerization of poly(vinyl chloride). J Phys Chem A 113:7899–7908

    Article  CAS  Google Scholar 

  98. Zubov VP, Kumar MV, Masterova MN, Kabanov VA (1979) Reactivity of allyl monomers in radical polymerization. J Macromol Sci Chem 1:111–131

    Google Scholar 

  99. Matsumoto A (2001) Polymerization of multiallyl monomers. Prog Polym Sci 26:189–257

    Article  CAS  Google Scholar 

  100. Harada S, Hasegawa S (1984) Homopolymerization of monoallyl ammonium salts with azo initiator. Macromol Chem Rapid Commun 5:27–31

    Article  CAS  Google Scholar 

  101. Ugur I, Vleeschouwer FD, Tuzun N, Aviyente V, Geerlings P, Liu S, Ayers PW, Proft FD (2009) Cyclopolymerization reactions of diallyl monomers: exploring electronic and steric effects using DFT reactivity indices. J Phys Chem A 113:8704–8711

    Article  CAS  Google Scholar 

  102. Pinter B, De Proft F, Van Speybroeck V, Hemelsoet K, Waroquier M, Chamorro E, Veszpremi T, Geerlings P (2007) Spin-polarized conceptual density functional theory study of the regioselectivity in ring closures of radicals. J Org Chem 72:348–356

    Article  CAS  Google Scholar 

  103. Kodaira T, Liu Q-Q, Satoyama M, Urushisaki M, Utsumi H (1999) Cyclopolymerization - XXVI. Repeating unit structure of cyclopolymers derived from N-substituted-N-allyl-2-(methoxycarbonyl)allylamines and mechanism of intramolecular cyclization. Polymer 40:6947–6954, and references therein

    Article  CAS  Google Scholar 

  104. Morell C, Grand A, Toro-Labbe A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212

    Article  CAS  Google Scholar 

  105. Ayers PW, Morell C, De Proft F, Geerlings P (2007) Understanding the Woodward-Hoffmann rules by using changes in electron density. Chem Eur J 13:8240–8247

    Article  CAS  Google Scholar 

  106. Ijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  107. De Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  108. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  CAS  Google Scholar 

  109. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  CAS  Google Scholar 

  110. Jakubek JZ, Simard B (2004) Two confined phases of argon adsorbed inside open single walled carbon nanotubes. Langmuir 20:5940–5945

    Article  CAS  Google Scholar 

  111. Andzelm J, Govind N, Maiti A (2006) Nanotube-based gas sensors—role of structural defects. Chem Phys Lett 421:58–62

    Article  CAS  Google Scholar 

  112. Thomas W, Zhou TC, Kong J, Dai H (2000) Gating individual nanotubes and crosses with scanning probes. Appl Phys Lett 76:2412–2416

    Article  Google Scholar 

  113. Chatterjee A. Book chapter (2011): Computer simulation to rationalize structure property correlation of Carbon Nano tube. Springer In a book Title: Carbon and oxide nanostructures, edited by Dr. Noorhana Yahya; Advanced Structured Materials 5, 143–164

    Google Scholar 

  114. Chatterjee A (2011) Excited state reactivity index theory: application for small moieties. Int J Quantum Chem 111:3821

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhijit Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chatterjee, A. (2012). Application of Reactivity Indices Within Density Functional Theory to Rationale Chemical Interactions. In: Putz, M., Mingos, D. (eds) Applications of Density Functional Theory to Chemical Reactivity. Structure and Bonding, vol 149. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32753-7_5

Download citation

Publish with us

Policies and ethics