Skip to main content

A Higher-Order Characterization of Probabilistic Polynomial Time

  • Conference paper
Foundational and Practical Aspects of Resource Analysis (FOPARA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7177))

Abstract

We present RSLR, an implicit higher-order characterization of the class PP of those problems which can be decided in probabilistic polynomial time with error probability smaller than \(\frac{1}{2}\). Analogously, a (less implicit) characterization of the class BPP can be obtained. RSLR is an extension of Hofmann’s SLR with a probabilistic primitive, which enjoys basic properties such as subject reduction and confluence. Polynomial time soundness of RSLR is obtained by syntactical means, as opposed to the standard literature on SLR-derived systems, which use semantics in an essential way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arora, S., Barak, B.: Computational Complexity, A Modern Approach. Cambridge University Press (2009)

    Google Scholar 

  2. Bellantoni, S.J., Niggl, K.H., Schwichtenberg, H.: Higher type recursion, ramification and polynomial time. Annals of Pure and Applied Logic 104(1-3), 17–30 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bellantoni, S.: Predicative recursion and the polytime hierarchy. In: Clote, P., Remmel, J.B. (eds.) Feasible Mathematics II, pp. 15–29. Birkhäuser (1995)

    Google Scholar 

  4. Bellantoni, S., Cook, S.A.: A new recursion-theoretic characterization of the polytime functions. Computational Complexity 2, 97–110 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonfante, G., Kahle, R., Marion, J.-Y., Oitavem, I.: Recursion Schemata for \({\mathit NC}^k\). In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 49–63. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Dal Lago, U., Martini, S., Sangiorgi, D.: Light logics and higher-order processes. In: Fröschle, S.B., Valencia, F.D. (eds.) Proceedings of the 17th International Workshop Expressiveness in Concurrency. EPTCS, vol. 41 (2010)

    Google Scholar 

  7. Dal Lago, U., Masini, A., Zorzi, M.: Quantum implicit computational complexity. Theoretical Computer Science 411(2), 377–409 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dal Lago, U., Parisen Toldin, P.: An higher-order characterization of probabilistic polynomial time (long version), http://arxiv.org/abs/1202.3317

  9. Hofmann, M.: A Mixed Modal/Linear Lambda Calculus with Applications to Bellantoni-Cook Safe Recursion. In: Nielsen, M., Thomas, W. (eds.) CSL 1997. LNCS, vol. 1414, pp. 275–294. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  10. Mitchell, J.C., Mitchell, M., Scedrov, A.: A linguistic characterization of bounded oracle computation and probabilistic polynomial time. In: Proceedings of the 39th Annual Symposium Foundations of Computer Science, pp. 725–733. IEEE Computer Society (1998)

    Google Scholar 

  11. Jones, N.D.: Logspace and ptime characterized by programming languages. Theoretical Computer Science 228, 151–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Leivant, D.: Stratified functional programs and computational complexity. In: Proceedings of the 20th International Symposium Principles of Programming Languages, pp. 325–333. ACM (1993)

    Google Scholar 

  13. Leivant, D., Marion, J.-Y.: Ramified Recurrence and Computational Complexity II: Substitution and Poly-Space. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 486–500. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  14. Schwichtenberg, H., Bellantoni, S.: Feasible computation with higher types. In: Proof and System-Reliability, pp. 399–415. Kluwer Academic Publishers (2001)

    Google Scholar 

  15. Zhang, Y.: The computational SLR: a logic for reasoning about computational indistinguishability. Mathematical Structures in Computer Science 20(5), 951–975 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dal Lago, U., Parisen Toldin, P. (2012). A Higher-Order Characterization of Probabilistic Polynomial Time. In: Peña, R., van Eekelen, M., Shkaravska, O. (eds) Foundational and Practical Aspects of Resource Analysis. FOPARA 2011. Lecture Notes in Computer Science, vol 7177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32495-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-32495-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-32494-9

  • Online ISBN: 978-3-642-32495-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics