Skip to main content

A Multiclassifier Approach for Drill Wear Prediction

  • Conference paper
  • 5829 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7376))

Abstract

Classification methods have been widely used during last years in order to predict patterns and trends of interest in data. In present paper, a multiclassifier approach that combines the output of some of the most popular data mining algorithms is shown. The approach is based on voting criteria, by estimating the confidence distributions of each algorithm individually and combining them according to three different methods: confidence voting, weighted voting and majority voting. To illustrate its applicability in a real problem, the drill wear detection in machine-tool sector is addressed. In this study, the accuracy obtained by each isolated classifier is compared with the performance of the multiclassifier when characterizing the patterns of interest involved in the drilling process and predicting the drill wear. Experimental results show that, in general, false positives obtained by the classifiers can be slightly reduced by using the multiclassifier approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Emmanouilidis, C., et al.: Flexible software for condition monitoring, incorporating novelty detection and diagnostics. Computers in Industry 57, 516–527 (2006)

    Article  Google Scholar 

  2. Cassady, C.R., Schneider, K., Yu, P.: Impact of Maintenance Resource Limitations on Manufacturing System Productivity. In: Proceedings of the Industrial Engineering Research 2002 Conference (2002)

    Google Scholar 

  3. Muller, A., et al.: Formalisation of a new prognosis model for supporting proactive maintenance implementation on industrial system. Reliability Engineering & System Safety 93, 234–253 (2008)

    Article  Google Scholar 

  4. van Erp, M., Vuurpijl, L., Schomaker, L.: An overview and comparison of voting methods for pattern recognition. In: Proc. of the 8th IWFHR, pp. 195–200 (2002)

    Google Scholar 

  5. Ferreiro, S., Arana, R., Aizpurua, G., Aramendi, G., Arnaiz, A., Sierra, B.: Data Mining for Burr Detection (in the Drilling Process). In: Proceedings of the 10th International Work-Conference on Artificial Neural Network, Salamanca, Spain, June 10-12 (2009)

    Google Scholar 

  6. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics, 2nd edn., XXIX, 487 p. 28 illus. Springer, NY (2002) ISBN 978-0-387-95442-4

    Google Scholar 

  7. Carrascal, A., Díez, A., Azpeitia, A.: Unsupervised Methods for Anomalies Detection through Intelligent Monitoring Systems. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS, vol. 5572, pp. 137–144. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  8. Kotsiantis, S.B.: Supervised Machine Learning. A Review of Classification Techniques, Informatics 31, 249–268 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., Steinberg, D.: Top 10 algorithms in data mining. Knowledge and Information Systems 14(1), 1–37 (2008)

    Article  Google Scholar 

  10. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence (2001)

    Google Scholar 

  11. Aha, D., Kibler, D.: Instance-based learning algorithms. Machine Learning 6, 37–66 (1991)

    Google Scholar 

  12. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines. Cambridge University Press (2000)

    Google Scholar 

  13. Powell, M.J.D.: Radial basis functions for multivariable interpolation: a review. In: Mason, J.C., Cox, M.G. (eds.) Algortithms for Approximation on Functions and Data, pp. 143–167. Oxford University Press, Oxford (1987)

    Google Scholar 

  14. Quinlan: C4.5. Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  15. Quinlan, J.R.: Induction of decision trees. Machine Learning 1(1), 81–106 (1986)

    Google Scholar 

  16. Cohen, W.W.: Fast effective rule induction. In: Proceedings of the Twelfth Internacional Conference on Machine Learning (1995)

    Google Scholar 

  17. Fürnkranz, J., Widner, G.: Incremental Reduced Error Pruning. In: Proceedings of the Eleventh Internacional Conference on Machine Learning (1994)

    Google Scholar 

  18. Stone, M.: Cross-validatory choice and assessment of statistical predictions (with discussion). Journal of the Royal Statistical Society, Series B 36, 111–147 (1974)

    MATH  Google Scholar 

  19. Kittler, J., Hated, M., Duin, R.P.W., Matas, J.: On Combining Classifiers. IEEE Transactions PAMI 20, 226–239 (1998)

    Article  Google Scholar 

  20. Verma, B., Gader, P., Chen, W.: Fusion of multiple handwritten word recognition techniques. Patt. Recog. Lett. 22, 991–998 (2001)

    Article  MATH  Google Scholar 

  21. Dietterich, T.G.: Machine learning research: Four current directions. AI Magazine 18(4), 97–136 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diez, A., Carrascal, A. (2012). A Multiclassifier Approach for Drill Wear Prediction. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2012. Lecture Notes in Computer Science(), vol 7376. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31537-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31537-4_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31536-7

  • Online ISBN: 978-3-642-31537-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics