Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 175))

Abstract

The averaged Hausdorff distance Δ p is a performance indicator in multi-objective evolutionary optimization which simultaneously takes into account proximity to the true Pareto front and uniform spread of solutions. Recently, the multi-objective evolutionary algorithm Δ p -EMOA was introduced which successfully generates evenly spaced Pareto front approximations for bi-objective problems by integrating an external archiving strategy into the SMS-EMOA based on Δ p . In this work a conceptual generalization of the Δ p -EMOA for higher objective space dimensions is presented and experimentally compared to state-of-the art EMOA as well as specialized EMOA variants on three-dimensional optimization problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schütze, O., Esquivel, X., Lara, A., Coello Coello, C.A.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Transactions on Evolutionary Computation (2012), doi:10.1109/TEVC.2011.2161872

    Google Scholar 

  2. Gerstl, K., Rudolph, G., Schütze, O., Trautmann, H.: Finding evenly spaced fronts for multiobjective control via averaging hausdorff-measure. In: Int’l. Proc. Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2011), pp. 975–980 (2011)

    Google Scholar 

  3. Mehnen, J., Wagner, T., Rudolph, G.: Evolutionary optimization of dynamic multi-objective test functions. In: Proceedings of the Second Italian Workshop on Evolutionary Computation, GSICE2 (2006); Published on CD-ROM

    Google Scholar 

  4. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  5. Pareto, V.: Manual of Political Economy. The MacMillan Press (1971)

    Google Scholar 

  6. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 711–716. IEEE Press, Piscataway (2002)

    Google Scholar 

  7. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Grunert da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Transactions on Evolutionary Computation 7(2), 117–132 (2003)

    Article  Google Scholar 

  8. Van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-Patterson AFB, Ohio (1999)

    Google Scholar 

  9. Coello Coello, C.A., Cruz Cortés, N.: Solving Multiobjective Optimization Problems using an Artificial Immune System. Genetic Programming and Evolvable Machines 6(2), 163–190 (2005)

    Article  Google Scholar 

  10. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  11. Beume, N.: S-metric calculation by considering dominated hypervolume as Klee’s measure problem. Evolutionary Computation 17(4), 477–492 (2009)

    Article  Google Scholar 

  12. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  13. Zhang, Q., Li, H.: MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712–731 (2007)

    Article  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2001)

    MATH  Google Scholar 

  15. Pateiro-Lopez, B., Rodriguez-Casal, A.: Generalizing the convex hull of a sample: The R package alphahull. Journal of Statistical Software 34(5), 1–28 (2010)

    Google Scholar 

  16. R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2011), ISBN 3-900051-07-0

    Google Scholar 

  17. Pateiro-Lopez, B., Rodriguez-Casal, A.: alphahull: Generalization of the convex hull of a sample of points in the plane. CRAN (2011), http://cran.r-project.org/web/packages/alphahull/index.html

  18. Kukkonen, S., Deb, K.: Improved pruning of non-dominated solutions based on crowding distance for bi-objective optimization problems. In: Proc. Congress on Evolutionary Computation (CEC 2006), vol. 1, pp. 1179–1186. IEEE Press, Piscataway (2006)

    Google Scholar 

  19. Kukkonen, S., Deb, K.: A fast and effective method for pruning of non-dominated solutions in many-objective problems. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 553–562. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Fogel, D., et al. (eds.) Proc. Int’l. Congress on Evolutionary Computation (CEC 2002), vol. 1, pp. 825–830. IEEE press (2002)

    Google Scholar 

  21. Viennet, R., Fontiex, C., Marc, I.: Multicriteria optimization using a genetic algorithm for determining a pareto set. International Journal of Systems Science 27(2), 255–260 (1996)

    Article  MATH  Google Scholar 

  22. Mersmann, O.: emoa: Evolutionary Multiobjective Optimization Algorithms, R package version 0.4-8 (2012), http://cran.r-project.org/web/packages/emoa/

  23. Mersmann, O., Trautmann, H., Steuer, D.: mco: Multi criteria optimization algorithms and related functions, R package version 1.0.9 (2012), http://cran.r-project.org/web/packages/mco/

  24. Durillo, J.J., Nebro, A.J.: jMetal: A Java framework for multi-objective optimization. Advances in Engineering Software 42, 760–771 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heike Trautmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Trautmann, H., Rudolph, G., Dominguez-Medina, C., Schütze, O. (2013). Finding Evenly Spaced Pareto Fronts for Three-Objective Optimization Problems. In: Schütze, O., et al. EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II. Advances in Intelligent Systems and Computing, vol 175. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31519-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31519-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31518-3

  • Online ISBN: 978-3-642-31519-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics