Skip to main content

Genomic Plasticity in Polyploid Wheat

  • Chapter
  • First Online:
Book cover Polyploidy and Genome Evolution

Abstract

The importance of hybridization and polyploidization in wheat speciation has been recognized for close to a century (Sakamura 1918; Kihara 1919, 1924, 1954; Percival 1921; Sax 1927). Following these pioneering works, it quickly became apparent that polyploid wheats are not the sum of their constituent genomes. This is not unexpected because the nascent hybrids/polyploids are equipped with a complex set of regulatory elements and of copy number variation that originate from two or more divergent genomes and that generate novel types of interactions and dosage effects. Moreover, they have to adjust at the cytological level, at the level of gene expression, and at the protein level. They also have to maintain genome stability through the regulation of meiotic pairing and recombination, the orchestration of cell division, and the silencing of transposons. The recent studies described here provide an impressive account with regard to the extent and the rapid time course at which a new genetic variant was established upon hybridization and polyploidization. We describe here the current knowledge on the changes that occurred in the wheat genome upon allopolyploidization, starting from the early evolutionary and cytological studies to the recent genomic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. Bull Plant Ind 180:1–63

    Google Scholar 

  • Aaronsohn A, Schweinfurth G (1906) Die auffindung des wilden emmers (Triticum dicoccum) in Nordpalästina. Altneuland Monatsschrift für die irtschaft. Erschliessung Palästinas 7(8):213–220

    Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci U S A 100(8):4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Aghaee-Sarbarzeh M, Dhaliwal HS, Harjit-Singh (2001) Suppression of rust resistance genes from distantly related species in Triticum durum-Aegilops amphiploids. In: Johnson R, Yahyaoui A, Wellings C, Saidi A, Ketata H (eds) Meeting the challenge of yellow rust in cereal crops. Proceedings of the First Regional Conference on Yellow Rust in the Central and West Asia and North Africa Region, Karaj, Iran. pp 8–14

    Google Scholar 

  • Akhunova AR, Matniyazov RT, Liang H, Akhunov ED (2010) Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC genomics 11:505

    Article  PubMed  CAS  Google Scholar 

  • Avivi L (1976) The effect of genes controlling different degrees of homoeologous pairing on quadrivalent frequency in induced autotetraploid lines of Triticum longissimum. Can J Genet Cytol 18:357–364

    Google Scholar 

  • Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN, Zelenin AV, Raupp WJ, Friebe BR, Gill BS (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76

    Article  CAS  Google Scholar 

  • Belyayev A, Raskina O, Korol A, Nevo E (2000) Coevolution of A and B genomes in allotetraploid Triticum dicoccoides. Genome 43(6):1021–1026

    PubMed  CAS  Google Scholar 

  • Belzile F, Beaulieu J, Jean M (2009) The allotetraploid Arabidopsis thaliana-Arabidopsis lyrata subsp petraea as an alternative model system for the study of polyploidy in plants. Mol Genet Genomics 281(4):421–435

    Article  PubMed  CAS  Google Scholar 

  • Bento M, Pereira HS, Rocheta M, Gustafson P, Viegas W, Silva M (2008) Polyploidization as a retraction force in plant genome evolution: sequence rearrangements in Triticale. PLoS ONE 3:1402–1413

    Article  CAS  Google Scholar 

  • Blakeslee AF (1937) Redoublement du nombre de chromosomes chez les plantes par traitement chimique. Compt Rend Acad Sci Paris 205:476–479

    Google Scholar 

  • Bottley A, Xia GM, Koebner RMD (2006) Homoeologous gene silencing in hexaploid wheat. Plant J 47(6):897–906

    Article  PubMed  CAS  Google Scholar 

  • Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1984) Does DNA content change in the course of triticale breeding. Cereal Res Commun 12(1–2):99–100

    Google Scholar 

  • Boyko EV, Badaev NS, Maximov NG, Zelenin AV (1988) Regularities of genome formation and organization in cereals. I. DNA quantitative changes in the process of allopolyploidization. Genetika 24:89–97

    Google Scholar 

  • Chague V, Just J, Mestiri I, Balzergue S, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Jahier J, Chalhoub B (2010) Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New phytol 187(4):1181–1194

    Article  PubMed  CAS  Google Scholar 

  • Chaudhary B et al (2009) Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (gossypium). Genetics 182:503–517

    Article  PubMed  CAS  Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier MF, Cattolico L, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17(4):1033–1045

    Google Scholar 

  • Chapman V, Miller TE, Riley R (1976) Equivalence of the A genome of bread wheat and that of Triticum urattu. Genet Res 27:69–76

    Google Scholar 

  • Dvorak J (1976) The relationship between the genome of Triticum urattu and the A and B genomes of Triticum aestivum. Can J Genet Cytol 18:371–377

    Google Scholar 

  • Dvorak J (2009) Triticeae genome structure and evolution. In: Feuiller C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin. pp 685–711

    Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Feldman M (2008) Nuclear DNA amount and genome downsizing in natural and synthetic allopolyploids of the genera Aegilops and Triticum. Genome 51(8):616–627

    Article  PubMed  CAS  Google Scholar 

  • Eilam T, Anikster Y, Millet E, Manisterski J, Sagi-Assif O, Feldman M (2010) Genome size in diploids, allopolyploids, and autopolyploids of mediterranean triticeae. doi:10.1155/2010/341380

  • Fahima T, Cheng JP, Peng JH, Nevo E, Korol A (2006) Asymmetry distribution of disease resistance genes and domestication synrome QTLs in tetraploid wheat genome. 8th International Congress of Plant Molecular Biology, Adelaide, Australia

    Google Scholar 

  • Feldman M (1965a) Chromosome pairing between differential genomes in hybrids of tetraploid Aegilops species. Evolution 19:563–568

    Article  Google Scholar 

  • Feldman M (1965b) Fertility of interspecific F1 hybrids and hybrid derivatives involving tetraploid species of Aegilops Section Pleionathera. Evolution 19:556–562

    Google Scholar 

  • Feldman M (1965c) Further evidence for natural hybridization between tetraploid tetraploid species of Aegilops Section Pleionathera. Evolution 19:162–174

    Article  Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The wheat book. Lavoisier Tech and Doc, Paris, pp 1–56

    Google Scholar 

  • Feldman M, Levy AA (2005) Allopolyploidy—a shaping force in the evolution of wheat genomes. Cytogenet Genome Res 109(1–3):250–258

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA (2009) Genome evolution in allopolyploid wheat—a revolutionary reprogramming followed by gradual changes. J Genet Genomics 36(9):511–518

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Levy AA, Fahima T, Korol A (2012) Genomic asymmetry in allopolyploid plants - wheat as a model. J. Exp. Bot. (in press)

    Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147(3):1381–1387

    PubMed  CAS  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman Scientific, London, pp 184–192

    Google Scholar 

  • Flagel LE, Chen LP, Chaudhary B, Wendel JF (2009) Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J Hered 100(4):487–490

    Article  PubMed  CAS  Google Scholar 

  • Flagel LE, Wendel JF (2010) Evolutionary rate variation, genomic dominance and duplicate gene expression evolution during allotetraploid cotton speciation. New Phytol 186(1):184–193

    Article  PubMed  CAS  Google Scholar 

  • Galili G, Feldman M (1984) Inter-genomic suppression of endosperm- protein genes in common wheat. Can J Genet Cytol 26:651–656

    CAS  Google Scholar 

  • Galili G, Levy AA, Feldman M (1986) Gene-dosage compensation of endosperm proteins in hexaploid wheat Triticum aestivum. Proc Natl Acad Sci U S A 83:6524–6528

    Article  PubMed  CAS  Google Scholar 

  • Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G (2006) Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat. Nature 439(7077):749–752

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Kulwal PL, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109(1–3):315–327

    Article  PubMed  CAS  Google Scholar 

  • Han FP, Fedak G, Guo WL, Liu B (2005) Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGcIR-1a) in newly synthesized wheat allopolyploids. Genetics 170(3):1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Han FP, Fedak G, Ouellet T, Liu B (2003) Rapid genomic changes in interspecific and intergeneric hybrids and allopolyploids of Triticeae. Genome 46(4):716–723

    Article  PubMed  CAS  Google Scholar 

  • Hart GH (1983a) Genetic and evolution of mulilocus isozymes in hexaploid wheat. In: Ratazzi MC, Scandalios JG, Whitt GS (eds) Isozymes: current topics in biological and medical research, vol 10., Genetics and Evolution Alan R. Liss., Inc., New York, pp 365–380

    Google Scholar 

  • Hart GH (1983b) Hexaploid wheat (Triticum aestivum L. em Thell.). In: Tanksley SD, Orton TJ (eds) Isozymes in plant genetics and breeding, Part. B, Elsvier Science Publishers B.V., Amsterdam, pp 35–56

    Google Scholar 

  • Hart GH (1987) Genetic and biochemical studies of enzymes. In: Heyne EG (ed) Wheat and wheat improvement, Second Ed., Amer. Soc. Agronomy, Madison, Wisconsin, USA

    Google Scholar 

  • He P, Friebe BR, Gill BS, Zhou JM (2003) Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Mol Biol 52(2):401–414

    Article  PubMed  CAS  Google Scholar 

  • Houchins K, ODell M, Flavell RB, Gustafson JP (1997) Cytosine methylation and nucleolar dominance in cereal hybrids. Mol Gen Genet 255(3):294–301

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 99(12):8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160(4):1651–1659

    PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nature Genet 33(1):102–106

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Khasdan V (2007) Large-scale survey of cytosine methylation of retrotransposons, and the impact of readout transcription from LTRs on expression of adjacent rice genes. Genetics 177:1975–1985

    Article  PubMed  CAS  Google Scholar 

  • Kenan-Eichler M, Leshkowitz D, Tal L, Noor E, Melamed-Bessudo C, Feldman M, Levy AA (2011) Wheat hand polyploidization results in deregulation of small RNAs. Genetics 188:263–272

    Article  PubMed  CAS  Google Scholar 

  • Kerber ER, Green GJ (1980) Suppression of stem rust resistance in hexaploid wheat cv Canthach by chromosome 7DL. Can J Bot 58:1347–1350

    Article  Google Scholar 

  • Kihara H (1919) Über cytologische studien bei einigen getreidearten. I. Species-bastarde des weizens und weizenroggen-bastarde. Bot Mag 33:17–38

    Google Scholar 

  • Kihara H (1924) Cytologische und genetische studien bei wichtigen getreidearten mit besonderer rücksicht ouf das verhalten der chromosomen und die sterilitat in den bastarden. Mem Cell Sci, Kyoto Imp University, B1: 1–200

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic 19:13–14

    Google Scholar 

  • Kihara H (1954) Considerations on the evolution and distribution of Aegilops species based on the analyzer-method. Cytologia 19:336–357

    Article  Google Scholar 

  • Kihara H, Lilienfeld F (1949) A new synthesized 6x-wheat. In: Larsson GBaR (ed) Proceedings of Eighth International Congress of Genetics, Stockholm, Sweden, 1949. Hereditas (Suppl), pp 307–319

    Google Scholar 

  • Kimber G, Sears ER (1987) Evolution in the genus Triticum and the origin of cultivated wheat. In: Heyne EG (ed) Wheat and wheat improvement. American Society of Agronomy, Madison, pp 154–164

    Google Scholar 

  • Kislev ME (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Isr J Bot 28:95–107

    Google Scholar 

  • Kraitshtein Z, Yaakov B, Khasdan V, Kashkush K (2010) Genetic and epigenetic dynamics of a retrotransposon after allopolyploidization of wheat. Genetics 186(3):U801–U889

    Article  CAS  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82(4):607–613

    Article  Google Scholar 

  • Liu B, Segal G, Vega JM, Feldman M, Abbo S (1997) Isolation and characterization of chromosome-specific DNA sequences from a chromosome arm genomic library of common wheat. Plant J 11(5):959–965

    Article  CAS  Google Scholar 

  • Liu B, Vega JM, Feldman M (1998a) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41(4):535–542

    PubMed  CAS  Google Scholar 

  • Liu B, Vega JM, Segal G, Abbo S, Rodova H, Feldman M (1998b) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41(2):272–277

    CAS  Google Scholar 

  • Lucas H, Moore G, Murphy G, Flavell RB (1992) Inverted repeats in the long-terminal repeats of the wheat retrotransposon wis 2–1A. Mol Bio Evol 9(4):716–728

    CAS  Google Scholar 

  • Lukens LN, Pires JC, Leon E, Vogelzang R, Oslach L, Osborn T (2006) Patterns of sequence loss and cytosine methylation within a population of newly resynthesized Brassica napus allopolyploids. Plant Physiol 140(1):336–348

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Ma XF, Fang P, Gustafson JP (2004) Polyploidization-induced genome variation in triticale. Genome 47(5):839–848

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2005) Genome evolution of allopolyploids: a process of cytological and genetic diploidization. Cytogenet Genome Res 109(1–3):236–249

    Article  PubMed  CAS  Google Scholar 

  • Ma XF, Gustafson JP (2006) Timing and rate of genome variation in triticale following allopolyploidization. Genome 49(8):950–958

    Article  PubMed  CAS  Google Scholar 

  • Maan SS (1977) Fertility of amphiploids in Triticinae. J Heredity 68:87–94

    Google Scholar 

  • Mac Key J (1954) Mutation breeding in polyploid cereals. Acta Agriculturae Scandinavica 4:549–557

    Article  Google Scholar 

  • Mac Key J (1958) Mutagenic response in Triticum at different lrvels of ploidy. In: Jenkins CB (ed) Proceedings 1st

    Google Scholar 

  • Mac Key J (1966) Species relationship in Triticum. Proceedings 2nd International Wheat Genetics Symposium, Lund 1963, Hereditas Suppl. 2, pp 237–276

    Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129(2):733–746

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang HM, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41(2):221–230

    Article  PubMed  CAS  Google Scholar 

  • Maestra B, Naranjo T (1999) Structural chromosome differentiation between Triticum timopheevii and T-turgidum and T-aestivum. Theor Appl Genet 98(5):744–750

    Article  CAS  Google Scholar 

  • McFadden ES, Sears ER (1944) The artificial synthesis of Triticum spelta. Records Genet Soc Amer 13:26–27

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Heredity 37(81–89):107–116

    Google Scholar 

  • Mestiri I, Chague V, Tanguy AM, Huneau C, Huteau V, Belcram H, Coriton O, Chalhoub B, Jahier J (2010) Newly synthesized wheat allohexaploids display progenitor-dependent meiotic stability and aneuploidy but structural genomic additivity. New phytol 186(1):86–101

    Article  PubMed  CAS  Google Scholar 

  • Mitra R, Bhatia C (1971) Isoenzymes and polyploidy. 1. Qualitative and quantitative isoenzyme studies in the Triticinae. Genet Res Camb 18:57–69

    Article  CAS  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin-I T, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Genet Genomics 276(3):304–312

    Article  PubMed  CAS  Google Scholar 

  • Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement. Madison, U.S.A., pp 19–87

    Google Scholar 

  • Nigumann P, Redik K, Matlik K, Speek M (2002) Many human genes are transcribed from the antisense promoter of L1 retrotransposon. Genomics 79(5):628–634

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, Berlin

    Google Scholar 

  • Okamoto M, Inomata N (1974) Possibility of 5B-like effect in diploid species. Wheat Inform Serv 38:15–16

    Google Scholar 

  • Ozkan H, Levy AA, Feldman M (2001) Allopolyploidy-Induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1735–1747

    PubMed  CAS  Google Scholar 

  • Ozkan H, Tuna M, Arumuganathan K (2003) Nonadditive changes in genome size during allopolyploidization in the wheat (Aegilops-Triticum) group. J Hered 94(3):260–264

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Alix K, Just J, Petit M, Sarilar V, Mhiri C, Ainouche M, Chalhoub B, Grandbastien MA (2010) Impact of transposable elements on the organization and function of allopolyploid genomes. New Phytol 186(1):37–45

    Article  PubMed  CAS  Google Scholar 

  • Parisod C, Salmon A, Zerjal T, Tenaillon M, Grandbastien MA, Ainouche M (2009) Rapid structural and epigenetic reorganization near transposable elements in hybrid and allopolyploid genomes in Spartina. New Phytol 184(4):1003–1015

    Article  PubMed  CAS  Google Scholar 

  • Peng I, Ronin Y, Fahima T, Röder MS, Li Y, Nevo E, Korol A (2003a) Genomic distribution of domestication QTLs in wild emmer wheat, Triticum dicoccoides. In Proceedings 10th International Wheat Genetics Symposium, Paestum, Italy, pp 34–37

    Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Roder MS, Li YC, Nevo E, Korol A (2003b) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci U S A 100(5):2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Percival J (1921) The wheat plant. E.P. Dutton and Company, New York, pp 1–463

    Google Scholar 

  • Petit M, Guidat C, Daniel J, Denis E, Montoriol E, Bui QT, Lim KY, Kovarik A, Leitch AR, Grandbastien MA, Mhiri C (2010) Mobilization of retrotransposons in synthetic allotetraploid tobacco. New Phytol 186(1):135–147

    Article  PubMed  CAS  Google Scholar 

  • Pikaard CS (2000) The epigenetics of nucleolar dominance. Trends Genet 16(11):495–500

    Article  PubMed  CAS  Google Scholar 

  • Prince VE, Pickett FB (2002) Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet 3:827–837

    Article  PubMed  CAS  Google Scholar 

  • Puig M, Caceres M, Ruiz A (2004) Silencing of a gene adjacent to the breakpoint of a widespread Drosophila inversion by a transposon-induced antisense RNA. P Natl Acad Sci U S A 101(24):9013–9018

    Article  CAS  Google Scholar 

  • Pumphrey M, Bai J, Laudencia-Chingcuanco D, Anderson O, Gill BS (2009) Nonadditive expression of homoeologous genes is established upon polyploidization in hexaploid wheat. Genetics 181(3):1147–1157

    Article  PubMed  CAS  Google Scholar 

  • Rapp RA, Udall JA, Wendel JF (2009) Genomic expression dominance in allopolyploids. Bmc Biol 7

    Google Scholar 

  • Sabot F, Guyot R, Wicker T, Chantret N, Laubin B, Chalhoub B, Leroy P, Sourdille P, Bernard M (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Genet Gen 274(2):119–130

    Article  CAS  Google Scholar 

  • Sakamura T (1918) Kurze mitteilung über die chromosomenzahalen und die verwandtschaftsverhältnisse der Triticum Arten. Bot Mag 32(1918):151–154

    Google Scholar 

  • Salina EA, Numerova OM, Ozkan H, Feldman M (2004) Alterations in subtelomeric tandem repeats during early stages of allopolyploidy in wheat. Genome 47(5):860–867

    Article  PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14(4):1163–1175

    Article  PubMed  CAS  Google Scholar 

  • Sax K (1927) Chromosome behavior in Triticum hybrids, Verhandlungen des V Int. Kongresses für Vererbungswissenchaft, Berlin, 2:1267–1284

    Google Scholar 

  • Schulz A (1913) Die geschichte der kultivierten getreide. Nebert, Halle

    Google Scholar 

  • Sears ER (1972) The nature of mutation in hexaploid wheat. Symp Biol Hung 12:73–82

    Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51

    Article  PubMed  CAS  Google Scholar 

  • Shaked H, Kashkush K, Ozkan H, Feldman M, Levy AA (2001) Sequence elimination and cytosine methylation are rapid and reproducible responses of the genome to wide hybridization and allopolyploidy in wheat. Plant Cell 13:1749–1759

    PubMed  CAS  Google Scholar 

  • Stebbins GLJ (1980) Polyploidy in plants: unsolved problems and prospect, in polyploidy—biological relevance. In: Lewis WH (ed) Plenum Press, New York

    Google Scholar 

  • Stebbins GLJ (1971) Chromosomal evolution in higher plants. Addison-Wesley, New York

    Google Scholar 

  • Stephens SG (1951) Possible significance of duplication in evolution. Adv Genet 4:247–265

    Article  PubMed  CAS  Google Scholar 

  • Thompson DA, Desai MM, Murray AW (2006) Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. Curr Biol: CB 16(16):1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Tirosh I, Reikhav S, Levy AA, Barkai N (2009) A yeast hybrid provides insight into the evolution of gene expression regulation. Science 324(5927):659–662

    Article  PubMed  CAS  Google Scholar 

  • Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. and Spach) Eig (Poaceae). Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • Veitia RA, Bottani S, Birchler JA (2008) Cellular reactions to gene dosage imbalance: genomic, transcriptomic and proteomic effects. Trends Genet 24(8):390–397

    Article  PubMed  CAS  Google Scholar 

  • Vicient CM, Jaaskelainen MJ, Kalendar R, Schulman AH (2001) Active retrotransposons are a common feature of grass genomes. Plant Physiol 125(3):1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Von Tschermak E, Bleier H (1926) Über fruchtbare Aegilops-weizenbastarde, der deutsch. Bot Ges 44:110–132

    Google Scholar 

  • Waines JG (1976) A model for the origin of diploidizing mechanisms in polyploid species. Amer Natur 110:415–430

    Article  Google Scholar 

  • Wang JB, Xu YH, Zhong L, Wu XM, Fang XP (2009) Rapid alterations of gene expression and cytosine methylation in newly synthesized Brassica napus allopolyploids. Planta 229(3):471–483

    Article  PubMed  CAS  Google Scholar 

  • Weissmann S, Feldman M, Gressel J (2005) Sequence evidence for sporadic intergeneric DNA introgression from wheat into a wild Aegilops species. Mol Biol Evol 22:2055–2062

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Mayer KFX, Gundlach H, Martis M, Steuernagel B, Scholz U, Simkova H, Kubalakova M, Choulet F, Taudien S, Platzer M, Feuillet C, Fahima T, Budak H, Dolezel J, Keller B, Stein N (2011) Frequent gene movement and pseudogene evolution is common to the large and complex genomes of wheat, barley, and their relatives. Plant Cell 23(5):1706–1718

    Article  PubMed  CAS  Google Scholar 

  • Yaakov B, Kashkush K (2011a) Massive alterations of the methylation patterns around DNA transposons in the first four generations of a newly formed wheat allohexaploid. Genome 54(1):42–49

    Article  PubMed  CAS  Google Scholar 

  • Yaakov B, Kashkush K (2011b) Methylation, transcription, and rearrangements of transposable elements in synthetic allopolyploids. Int J Plant Genomics. doi:10.1155/2011/569826

    PubMed  Google Scholar 

  • Zhang ZC, Belcram H, Gornicki P, Charles M, Just J, Huneau C, Magdelenat G, Couloux A, Samain S, Gill BS, Rasmussen JB, Barbe V, Faris JD, Chalhoub B (2011) Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat. P Natl Acad Sci U S A 108(46):18737–18742

    Article  CAS  Google Scholar 

  • Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F, Liu B (2011) Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics. doi:10.1534/genetics.111.127688

    Google Scholar 

  • Zohary D, Feldman M (1962) Hybridization between amphiploids and the evolution of polyploids in the wheat (Aegilops-Triticum) group. Evolution 16:44–61

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Beery Yaakov for his critical reading of the manuscript and Hakan Ozkan for providing part of the seed material for the project. This work was supported by grants from the Israel Science Foundation (grant # 142/08 to K.K, and grant # 616/09 to A.A.L).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Kashkush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feldman, M., Levy, A., Chalhoub, B., Kashkush, K. (2012). Genomic Plasticity in Polyploid Wheat. In: Soltis, P., Soltis, D. (eds) Polyploidy and Genome Evolution. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31442-1_7

Download citation

Publish with us

Policies and ethics