Skip to main content

In Vitro Assessment of Biocompatibility for Orthodontic Materials

  • Chapter
  • First Online:
Research Methods in Orthodontics

Abstract

Biocompatibility testing of novel biomaterials employs a wide spectrum of various in vivo and in vitro tests. As in vitro testing can respond to the urgent need for screening the huge amount of new materials produced nowadays, the present chapter is focusing on the cell-based assay systems used for such tests and introduces briefly the most common in vitro methods for the evaluation of the cell response to biomaterials, with an emphasis on testing of cell death and cell proliferation. Advantages and disadvantages of these methods, some hints for the setup of the tests, as well as, novel trends in assay methodologies are also here discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams DF (1987) Definitions in biomaterials. Proceedings of a consensus conference of the European society for biomaterials, Chester, England, March 3–5, 1986, 4. Elsevier Science Ltd, New York

    Google Scholar 

  2. Wataha JC (2001) Principles of biocompatibility for dental practitioners. J Prosthet Dent 86(2):203–209

    Article  PubMed  Google Scholar 

  3. Bester MJ, Erasmus F, Pretorius E (2003) Presenting an in vitro cell culture model to determine the cytotoxic effect of benzoyl peroxide vapours. SADJ 58(5):183–186, 188

    PubMed  Google Scholar 

  4. Hauman CH, Love RM (2003) Biocompatibility of dental materials used in contemporary endodontic therapy: a review. Part 1. Intracanal drugs and substances. Int Endod J 36(2):75–85

    Article  PubMed  Google Scholar 

  5. Autian J (1970) The use of rabbit implants and tissue culture tests for the evaluation of dental materials. Int Dent J 20(3):481–490

    PubMed  Google Scholar 

  6. ISO (1984) Biological evaluation of dental materials. International Organization for Standardization Technical Report:7405

    Google Scholar 

  7. Al-Hiyasat AS, Darmani H (2005) The effects of recasting on the cytotoxicity of base metal alloys. J Prosthet Dent 93(2):158–163

    Article  PubMed  Google Scholar 

  8. Nelson SK, Wataha JC, Lockwood PE (1999) Accelerated toxicity testing of casting alloys and reduction of intraoral release of elements. J Prosthet Dent 81(6):715–720

    Article  PubMed  Google Scholar 

  9. Watanabe I, Wataha JC, Lockwood PE, Shimizu H, Cai Z, Okabe T (2004) Cytotoxicity of commercial and novel binary titanium alloys with and without a surface-reaction layer. J Oral Rehabil 31(2):185–189

    Article  PubMed  Google Scholar 

  10. Mockers O, Deroze D, Camps J (2002) Cytotoxicity of orthodontic bands, brackets and archwires in vitro. Dent Mater 18(4):311–317

    Article  PubMed  Google Scholar 

  11. Wataha JC, Hanks CT, Sun Z (1994) Effect of cell line on in vitro metal ion cytotoxicity. Dent Mater 10(3):156–161

    Article  PubMed  Google Scholar 

  12. ISO (1999) Biological evaluation of medical devices – part 5: tests for in vitro cytotoxicity. International Organization for Standardization 10993-5:1999(E), 2nd edn

    Google Scholar 

  13. Adams RLP (1980) Cell culture for biochemists. Elsevier, Amsterdam, pp 181–201

    Google Scholar 

  14. Feigal RJ, Yesilsoy C, Messer HH, Nelson J (1985) Differential sensitivity of normal human pulp and transformed mouse fibroblasts to cytotoxic challenge. Arch Oral Biol 30(8):609–613

    Article  PubMed  Google Scholar 

  15. Al-Nazhan S, Spangberg L (1990) Morphological cell changes due to chemical toxicity of a dental material: an electron microscopic study on human periodontal ligament fibroblasts and 1929 cells. J Endod 16(3):129–134

    Article  PubMed  Google Scholar 

  16. Eliades T, Pratsinis H, Kletsas D, Eliades G, Makou M (2004) Characterization and cytotoxicity of ions released from stainless steel and nickel-titanium orthodontic alloys. Am J Orthod Dentofacial Orthop 125(1):24–29

    Article  PubMed  Google Scholar 

  17. Gioka C, Bourauel C, Hiskia A, Kletsas D, Eliades T, Eliades G (2005) Light-cured or chemically cured orthodontic adhesive resins? A selection based on the degree of cure, monomer leaching, and cytotoxicity. Am J Orthod Dentofacial Orthop 127(4):413–419; quiz 516

    Article  PubMed  Google Scholar 

  18. Eliades T, Gioni V, Kletsas D, Athanasiou A, Eliades G (2007) Oestrogenicity of orthodontic adhesive resins. Eur J Orthod 29(4):404–407

    Article  PubMed  Google Scholar 

  19. Gioka C, Eliades T, Zinelis S, Pratsinis H, Athanasiou AE, Eliades G, Kletsas D (2009) Characterization and in vitro estrogenicity of orthodontic adhesive particulates produced by simulated debonding. Dent Mater 25(3):376–382

    Article  PubMed  Google Scholar 

  20. Hsieh JK, Kletsas D, Clunn G, Hughes AD, Schachter M, Demoliou-Mason C (2000) P53, p21(waf1/cip1), and mdm2 involvement in the proliferation and apoptosis in an in vitro model of conditionally immortalized human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 20(4):973–981

    Article  PubMed  Google Scholar 

  21. MacDougall M, Unterbrink A, Carnes D, Rani S, Luan X, Chen S (2001) Utilization of mo6-g3 immortalized odontoblast cells in studies regarding dentinogenesis. Adv Dent Res 15:25–29

    Article  PubMed  Google Scholar 

  22. Thonemann B, Schmalz G (2000) Bovine dental papilla-derived cells immortalized with hpv 18 e6/e7. Eur J Oral Sci 108(5):432–441

    Article  PubMed  Google Scholar 

  23. Kletsas D (2003) Aging of fibroblasts. In: Kaul SC, Wadhwa R (eds) Aging of cells in and outside the body. Kluwer Academic Publishers, Dordrecht, pp 27–46

    Google Scholar 

  24. Taira M, Toguchi MS, Hamada Y, Takahashi J, Itou R, Toyosawa S, Ijyuin N, Okazaki M (2001) Studies on cytotoxic effect of nickel ions on three cultured fibroblasts. J Mater Sci Mater Med 12(5):373–376

    Article  PubMed  Google Scholar 

  25. Rossa C Jr, Marcantonio E Jr, Santos LA, Boschi AO, Raddi MS (2005) Cytotoxicity of two novel formulations of calcium phosphate cements: a comparative in vitro study. Artif Organs 29(2):114–121

    Article  PubMed  Google Scholar 

  26. Evans RD, McDonald F (1995) Effect of corrosion products (neodymium iron boron) on oral fibroblast proliferation. J Appl Biomater 6(3):199–202

    Article  PubMed  Google Scholar 

  27. Finlay GJ, Baguley BC, Wilson WR (1984) A semiautomated microculture method for investigating growth inhibitory effects of cytotoxic compounds on exponentially growing carcinoma cells. Anal Biochem 139(2):272–277

    Article  PubMed  Google Scholar 

  28. Oliver MH, Harrison NK, Bishop JE, Cole PJ, Laurent GJ (1989) A rapid and convenient assay for counting cells cultured in microwell plates: application for assessment of growth factors. J Cell Sci 92(Pt 3):513–518

    PubMed  Google Scholar 

  29. Schwarz F, Aoki A, Sculean A, Georg T, Scherbaum W, Becker J (2003) In vivo effects of an er:Yag laser, an ultrasonic system and scaling and root planing on the biocompatibility of periodontally diseased root surfaces in cultures of human pdl fibroblasts. Lasers Surg Med 33(2):140–147

    Article  PubMed  Google Scholar 

  30. Al-Shaher A, Wallace J, Agarwal S, Bretz W, Baugh D (2004) Effect of propolis on human fibroblasts from the pulp and periodontal ligament. J Endod 30(5):359–361

    Article  PubMed  Google Scholar 

  31. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM (1985) Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science 230(4728):943–945

    Article  PubMed  Google Scholar 

  32. Laughton C (1984) Quantification of attached cells in microtiter plates based on coomassie brilliant blue g-250 staining of total cellular protein. Anal Biochem 140(2):417–423

    Article  PubMed  Google Scholar 

  33. Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, Scudiero DA, Monks A, Boyd MR (1990) Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst 82(13):1113–1118

    Article  PubMed  Google Scholar 

  34. Cao T, Saw TY, Heng BC, Liu H, Yap AU, Ng ML (2005) Comparison of different test models for the assessment of cytotoxicity of composite resins. J Appl Toxicol 25(2):101–108

    Article  PubMed  Google Scholar 

  35. Hopp M, Rogaschewski S, Groth T (2003) Testing the cytotoxicity of metal alloys used as magnetic prosthetic devices. J Mater Sci Mater Med 14(4):335–345

    Article  PubMed  Google Scholar 

  36. Lonnroth EC, Dahl JE (2003) Cytotoxicity of liquids and powders of chemically different dental materials evaluated using dimethylthiazol diphenyltetrazolium and neutral red tests. Acta Odontol Scand 61(1):52–56

    PubMed  Google Scholar 

  37. Lowik CW, Alblas MJ, van de Ruit M, Papapoulos SE, van der Pluijm G (1993) Quantification of adherent and nonadherent cells cultured in 96-well plates using the supravital stain neutral red. Anal Biochem 213(2):426–433

    Article  PubMed  Google Scholar 

  38. Leeder JS, Dosch HM, Harper PA, Lam P, Spielberg SP (1989) Fluorescence-based viability assay for studies of reactive drug intermediates. Anal Biochem 177(2):364–372

    Article  PubMed  Google Scholar 

  39. Chang YC, Huang FM, Cheng MH, Chou LS, Chou MY (1998) In vitro evaluation of the cytotoxicity and genotoxicity of root canal medicines on human pulp fibroblasts. J Endod 24(9):604–606

    Article  PubMed  Google Scholar 

  40. Trost LC, Lemasters JJ (1994) A cytotoxicity assay for tumor necrosis factor employing a multiwell fluorescence scanner. Anal Biochem 220(1):149–153

    Article  PubMed  Google Scholar 

  41. Begg AC, Mooren E (1989) Rapid fluorescence-based assay for radiosensitivity and chemosensitivity testing in mammalian cells in vitro. Cancer Res 49(3):565–569

    PubMed  Google Scholar 

  42. Chang YC, Chou MY (2001) Cytotoxicity of fluoride on human pulp cell cultures in vitro. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 91(2):230–234

    Article  PubMed  Google Scholar 

  43. Chang YC, Tai KW, Huang FM, Huang MF (2000) Cytotoxic and nongenotoxic effects of phenolic compounds in human pulp cell cultures. J Endod 26(8):440–443

    Article  PubMed  Google Scholar 

  44. Chang YC, Hu CC, Tseng TH, Tai KW, Lii CK, Chou MY (2001) Synergistic effects of nicotine on arecoline-induced cytotoxicity in human buccal mucosal fibroblasts. J Oral Pathol Med 30(8):458–464

    Article  PubMed  Google Scholar 

  45. Ross DD, Joneckis CC, Ordonez JV, Sisk AM, Wu RK, Hamburger AW, Nora RE (1989) Estimation of cell survival by flow cytometric quantification of fluorescein diacetate/propidium iodide viable cell number. Cancer Res 49(14):3776–3782

    PubMed  Google Scholar 

  46. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  PubMed  Google Scholar 

  47. Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR (1988) Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res 48(3):589–601

    PubMed  Google Scholar 

  48. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J Immunol Methods 89(2):271–277

    Article  PubMed  Google Scholar 

  49. Huang FM, Tai KW, Chou MY, Chang YC (2002) Resinous perforation-repair materials inhibit the growth, attachment, and proliferation of human gingival fibroblasts. J Endod 28(4):291–294

    Article  PubMed  Google Scholar 

  50. Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 48(17):4827–4833

    PubMed  Google Scholar 

  51. Jost LM, Kirkwood JM, Whiteside TL (1992) Improved short- and long-term xtt-based colorimetric cellular cytotoxicity assay for melanoma and other tumor cells. J Immunol Methods 147(2):153–165

    Article  PubMed  Google Scholar 

  52. Kehe K, Reichl FX, Durner J, Walther U, Hickel R, Forth W (2001) Cytotoxicity of dental composite components and mercury compounds in pulmonary cells. Biomaterials 22(4):317–322

    Article  PubMed  Google Scholar 

  53. Vistica DT, Skehan P, Scudiero D, Monks A, Pittman A, Boyd MR (1991) Tetrazolium-based assays for cellular viability: a critical examination of selected parameters affecting formazan production. Cancer Res 51(10):2515–2520

    PubMed  Google Scholar 

  54. Freshney RI, Morgan D (1978) Radioisotopic quantitation in microtitration plates by an autofluorographic method. Cell Biol Int Rep 2(4):375–380

    Article  PubMed  Google Scholar 

  55. Freshney RI, Paul J, Kane IM (1975) Assay of anti-cancer drugs in tissue culture: conditions affecting their ability to incorporate 3 h-leucine after drug treatment. Br J Cancer 31(1):89–99

    Article  PubMed  Google Scholar 

  56. Adams RLP (1980) Cell culture for biochemists. Elsevier, Amsterdam, pp 23–24

    Google Scholar 

  57. Chang YC, Huang FM, Tai KW, Yang LC, Chou MY (2002) Mechanisms of cytotoxicity of nicotine in human periodontal ligament fibroblast cultures in vitro. J Periodontal Res 37(4):279–285

    Article  PubMed  Google Scholar 

  58. Das KC, Garewal G, Mohanty D (1980) Derangement of DNA synthesis in erythroleukaemia. Normal deoxyuridine suppression and impaired thymidine incorporation in bone marrow culture. Acta Haematol 64(3):121–130

    Article  PubMed  Google Scholar 

  59. Gratzner HG (1982) Monoclonal antibody to 5-bromo- and 5-iododeoxyuridine: a new reagent for detection of DNA replication. Science 218(4571):474–475

    Article  PubMed  Google Scholar 

  60. Grill V, Sandrucci MA, Di Lenarda R, Basa M, Narducci P, Martelli AM, Bareggi R (2000) In vitro evaluation of the biocompatibility of dental alloys: fibronectin expression patterns and relationships to cellular proliferation rates. Quintessence Int 31(10):741–747

    PubMed  Google Scholar 

  61. Pratsinis H, Kletsas D (2007) Pdgf, bfgf and igf-i stimulate the proliferation of intervertebral disc cells in vitro via the activation of the erk and akt signaling pathways. Eur Spine J 16(11):1858–1866. doi:10.1007/s00586-007-0408-9

    Article  PubMed  Google Scholar 

  62. Casasco A, Casasco M, Calligaro A, Ferrieri G, Brambilla E, Strohmenger L, Alberici R, Mazzini G (1997) Cell proliferation in developing human dental pulp. A combined flow cytometric and immunohistochemical study. Eur J Oral Sci 105(6):609–613

    Article  PubMed  Google Scholar 

  63. D’Incalci M, Torti L, Damia G, Erba E, Morasca L, Garattini S (1983) Ovarian reticular cell sarcoma of the mouse (m5076) made resistant to cyclophosphamide. Cancer Res 43(12 Pt 1):5674–5680

    PubMed  Google Scholar 

  64. Erba E, Vaghi M, Pepe S, Amato G, Bistolfi M, Ubezio P, Mangioni C, Landoni F, Morasca L (1985) DNA index of ovarian carcinomas from 56 patients: in vivo in vitro studies. Br J Cancer 52(4):565–573

    Article  PubMed  Google Scholar 

  65. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nor JE (2005) Effect of proroot mta on pulp cell apoptosis and proliferation in vitro. J Endod 31(5):387–391

    Article  PubMed  Google Scholar 

  66. Nassiri MR, Hanks CT, Cameron MJ, Strawn SE, Craig RG (1994) Application of flow cytometry to determine the cytotoxicity of urethane dimethacrylate in human cells. J Biomed Mater Res 28(2):153–158

    Article  PubMed  Google Scholar 

  67. Crissman HA, Steinkamp JA (1987) A new method for rapid and sensitive detection of bromodeoxyuridine in DNA-replicating cells. Exp Cell Res 173(1):256–261

    Article  PubMed  Google Scholar 

  68. Zeile G (1980) Intracytoplasmic immunofluorescence in multiple myeloma. Cytometry 1(1):37–41

    Article  PubMed  Google Scholar 

  69. Cavalcanti BN, Rode SM, Marques MM (2005) Cytotoxicity of substances leached or dissolved from pulp capping materials. Int Endod J 38(8):505–509

    Article  PubMed  Google Scholar 

  70. Pourzarandian A, Watanabe H, Ruwanpura SM, Aoki A, Ishikawa I (2005) Effect of low-level er:Yag laser irradiation on cultured human gingival fibroblasts. J Periodontol 76(2):187–193

    Article  PubMed  Google Scholar 

  71. Weisenthal LM, Marsden JA, Dill PL, Macaluso CK (1983) A novel dye exclusion method for testing in vitro chemosensitivity of human tumors. Cancer Res 43(2):749–757

    PubMed  Google Scholar 

  72. Krause AW, Carley WW, Webb WW (1984) Fluorescent erythrosin b is preferable to trypan blue as a vital exclusion dye for mammalian cells in monolayer culture. J Histochem Cytochem 32(10):1084–1090

    Article  PubMed  Google Scholar 

  73. Fisher G, Rice GC, Hahn GM (1986) Dansyl lysine, a new probe for assaying heat-induced cell killing and thermotolerance in vitro and in vivo. Cancer Res 46(10):5064–5067

    PubMed  Google Scholar 

  74. Bean TA, Zhuang WC, Tong PY, Eick JD, Chappelow CC, Yourtee DM (1995) Comparison of tetrazolium colorimetric and 51cr release assays for cytotoxicity determination of dental biomaterials. Dent Mater 11(5):327–331

    Article  PubMed  Google Scholar 

  75. Clark RA, Klebanoff SJ, Einstein AB, Fefer A (1975) Peroxidase-h2o2-halide system: ­cytotoxic effect on mammalian tumor cells. Blood 45(2):161–170

    PubMed  Google Scholar 

  76. Detrick-Hooks B, Borsos T, Rapp HJ (1975) Quantitative comparison of techniques used to measure complement-mediated cytotoxicity of nucleated cells. J Immunol 114(1 Pt 2):287–290

    PubMed  Google Scholar 

  77. Wennberg A, Mjor IA, Hensten-Pettersen A (1983) Biological evaluation of dental restorative materials–a comparison of different test methods. J Biomed Mater Res 17(1):23–36

    Article  PubMed  Google Scholar 

  78. Cui J, Bystryn JC (1992) An improved europium release assay for complement-mediated cytolysis. J Immunol Methods 147(1):13–19

    Article  PubMed  Google Scholar 

  79. Roper PR, Drewinko B (1976) Comparison of in vitro methods to determine drug-induced cell lethality. Cancer Res 36(7 PT 1):2182–2188

    PubMed  Google Scholar 

  80. Zuckerbraun HL, Babich H, May R, Sinensky MC (1998) Triclosan: cytotoxicity, mode of action, and induction of apoptosis in human gingival cells in vitro. Eur J Oral Sci 106(2 Pt 1):628–636

    Article  PubMed  Google Scholar 

  81. Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne VL, Culhane AC, Williams GT (1996) Apoptosis: molecular regulation of cell death. Eur J Biochem 236(1):1–26

    Article  PubMed  Google Scholar 

  82. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284(5756):555–556

    Article  PubMed  Google Scholar 

  83. Gooch JL, Yee D (1999) Strain-specific differences in formation of apoptotic DNA ladders in mcf-7 breast cancer cells. Cancer Lett 144(1):31–37

    Article  PubMed  Google Scholar 

  84. Papadopoulou A, Kletsas D (2011) Human lung fibroblasts prematurely senescent after exposure to ionizing radiation enhance the growth of malignant lung epithelial cells in vitro and in vivo. Int J Oncol 39(4):989–999

    PubMed  Google Scholar 

  85. Darzynkiewicz Z, Bruno S, Del Bino G, Gorczyca W, Hotz MA, Lassota P, Traganos F (1992) Features of apoptotic cells measured by flow cytometry. Cytometry 13(8):795–808

    Article  PubMed  Google Scholar 

  86. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Article  PubMed  Google Scholar 

  87. Li X, Traganos F, Darzynkiewicz Z (1994) Simultaneous analysis of DNA replication and apoptosis during treatment of hl-60 cells with camptothecin and hyperthermia and mitogen stimulation of human lymphocytes. Cancer Res 54(16):4289–4293

    PubMed  Google Scholar 

  88. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin v for flow cytometric detection of phosphatidylserine expression on b cells ­undergoing apoptosis. Blood 84(5):1415–1420

    PubMed  Google Scholar 

  89. Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C (1995) A novel assay for ­apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled annexin v. J Immunol Methods 184(1):39–51

    Article  PubMed  Google Scholar 

  90. Reid S, Cross R, Snow EC (1996) Combined Hoechst 33342 and merocyanine 540 staining to examine murine b cell cycle stage, viability and apoptosis. J Immunol Methods 192(1–2):43–54

    Article  PubMed  Google Scholar 

  91. Finkel E (2001) The mitochondrion: is it central to apoptosis? Science 292(5517):624–626

    Article  PubMed  Google Scholar 

  92. Smaili SS, Hsu YT, Youle RJ, Russell JT (2000) Mitochondria in ca2+ signaling and apoptosis. J Bioenerg Biomembr 32(1):35–46

    Article  PubMed  Google Scholar 

  93. Ichimiya M, Chang SH, Liu H, Berezesky IK, Trump BF, Amstad PA (1998) Effect of bcl-2 on oxidant-induced cell death and intracellular ca2+ mobilization. Am J Physiol 275(3 Pt 1):C832–C839

    PubMed  Google Scholar 

  94. Meleti Z, Shapiro IM, Adams CS (2000) Inorganic phosphate induces apoptosis of osteoblast-like cells in culture. Bone 27(3):359–366

    Article  PubMed  Google Scholar 

  95. Shenker BJ, Guo TL, Shapiro IM, O I (1999) Induction of apoptosis in human t-cells by methyl mercury: temporal relationship between mitochondrial dysfunction and loss of reductive reserve. Toxicol Appl Pharmacol 157(1):23–35

    Article  PubMed  Google Scholar 

  96. Pendergrass W, Wolf N, Poot M (2004) Efficacy of mitotracker green and cmxrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61(2):162–169

    Article  PubMed  Google Scholar 

  97. Stanislawski L, Soheili-Majd E, Perianin A, Goldberg M (2000) Dental restorative biomaterials induce glutathione depletion in cultured human gingival fibroblast: protective effect of n-acetyl cysteine. J Biomed Mater Res 51(3):469–474

    Article  PubMed  Google Scholar 

  98. Athanasas K, Magiatis P, Fokialakis N, Skaltsounis AL, Pratsinis H, Kletsas D (2004) Hyperjovinols a and b: two new phloroglucinol derivatives from Hypericum jovis with ­antioxidant activity in cell cultures. J Nat Prod 67(6):973–977

    Article  PubMed  Google Scholar 

  99. Atsumi T, Ishihara M, Kadoma Y, Tonosaki K, Fujisawa S (2004) Comparative radical ­production and cytotoxicity induced by camphorquinone and 9-fluorenone against human pulp fibroblasts. J Oral Rehabil 31(12):1155–1164

    Article  PubMed  Google Scholar 

  100. Atsumi T, Iwakura I, Fujisawa S, Ueha T (2001) Reactive oxygen species generation and photo-cytotoxicity of eugenol in solutions of various ph. Biomaterials 22(12):1459–1466

    Article  PubMed  Google Scholar 

  101. Mavrogonatou E, Eliades T, Eliades G, Kletsas D (2010) The effect of triethylene glycol dimethacrylate on p53-dependent g2 arrest in human gingival fibroblasts. Biomaterials 31(33):8530–8538

    Article  PubMed  Google Scholar 

  102. Spagnuolo G, Annunziata M, Rengo S (2004) Cytotoxicity and oxidative stress caused by dental adhesive systems cured with halogen and led lights. Clin Oral Investig 8(2):81–85

    Article  PubMed  Google Scholar 

  103. Stanislawski L, Lefeuvre M, Bourd K, Soheili-Majd E, Goldberg M, Perianin A (2003) Tegdma-induced toxicity in human fibroblasts is associated with early and drastic glutathione depletion with subsequent production of oxygen reactive species. J Biomed Mater Res A 66(3):476–482

    Article  PubMed  Google Scholar 

  104. Chang HH, Guo MK, Kasten FH, Chang MC, Huang GF, Wang YL, Wang RS, Jeng JH (2005) Stimulation of glutathione depletion, ros production and cell cycle arrest of dental pulp cells and gingival epithelial cells by hema. Biomaterials 26(7):745–753

    Article  PubMed  Google Scholar 

  105. Kletsas D, Barbieri D, Stathakos D, Botti B, Bergamini S, Tomasi A, Monti D, Malorni W, Franceschi C (1998) The highly reducing sugar 2-deoxy-d-ribose induces apoptosis in human fibroblasts by reduced glutathione depletion and cytoskeletal disruption. Biochem Biophys Res Commun 243(2):416–425

    Article  PubMed  Google Scholar 

  106. Lefeuvre M, Bourd K, Loriot MA, Goldberg M, Beaune P, Perianin A, Stanislawski L (2004) Tegdma modulates glutathione transferase p1 activity in gingival fibroblasts. J Dent Res 83(12):914–919

    Article  PubMed  Google Scholar 

  107. Mavrogonatou E, Kletsas D (2009) High osmolality activates the g1 and g2 cell cycle checkpoints and affects the DNA integrity of nucleus pulposus intervertebral disc cells triggering an enhanced DNA repair response. DNA Repair (Amst) 8(8):930–943

    Article  Google Scholar 

  108. Piperakis SM, Visvardis EE, Tassiou AM (1999) Comet assay for nuclear DNA damage. Methods Enzymol 300:184–194

    Article  PubMed  Google Scholar 

  109. Phan PV, Grzanna M, Chu J, Polotsky A, el Ghannam A, Van Heerden D, Hungerford DS, Frondoza CG (2003) The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. J Biomed Mater Res A 67(3):1001–1008

    Article  PubMed  Google Scholar 

  110. Sun ZL, Wataha JC, Hanks CT (1997) Effects of metal ions on osteoblast-like cell metabolism and differentiation. J Biomed Mater Res 34(1):29–37

    Article  PubMed  Google Scholar 

  111. Abdullah D, Ford TR, Papaioannou S, Nicholson J, McDonald F (2002) An evaluation of accelerated portland cement as a restorative material. Biomaterials 23(19):4001–4010

    Article  PubMed  Google Scholar 

  112. Taoufik K, Mavrogonatou E, Eliades T, Papagiannoulis L, Eliades G, Kletsas D (2008) Effect of blue light on the proliferation of human gingival fibroblasts. Dent Mater 24(7):895–900

    Article  PubMed  Google Scholar 

  113. Ferraz MP, Knowles JC, Olsen I, Monteiro FJ, Santos JD (2000) Flow cytometry analysis of the effects of pre-immersion on the biocompatibility of glass-reinforced hydroxyapatite plasma-sprayed coatings. Biomaterials 21(8):813–820

    Article  PubMed  Google Scholar 

  114. Lopes MA, Knowles JC, Kuru L, Santos JD, Monteiro FJ, Olsen I (1998) Flow cytometry for assessing biocompatibility. J Biomed Mater Res 41(4):649–656

    Article  PubMed  Google Scholar 

  115. Huang TH, Ding SJ, Hsu TC, Kao CT (2003) Effects of mineral trioxide aggregate (mta) extracts on mitogen-activated protein kinase activity in human osteosarcoma cell line (u2os). Biomaterials 24(22):3909–3913

    Article  PubMed  Google Scholar 

  116. Kudrin AV (2000) Trace elements in regulation of nf-kappab activity. J Trace Elem Med Biol 14(3):129–142

    Article  PubMed  Google Scholar 

  117. Carinci F, Pezzetti F, Volinia S, Francioso F, Arcelli D, Farina E, Piattelli A (2004) Zirconium oxide: analysis of mg63 osteoblast-like cell response by means of a microarray technology. Biomaterials 25(2):215–228

    Article  PubMed  Google Scholar 

  118. Carinci F, Volinia S, Pezzetti F, Francioso F, Tosi L, Piattelli A (2003) Titanium-cell interaction: analysis of gene expression profiling. J Biomed Mater Res B Appl Biomater 66(1):341–346

    Article  PubMed  Google Scholar 

  119. Cheung HS, Haak MH (1989) Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study. Biomaterials 10(1):63–67

    Article  PubMed  Google Scholar 

  120. Ramires PA, Wennerberg A, Johansson CB, Cosentino F, Tundo S, Milella E (2003) Biological behavior of sol–gel coated dental implants. J Mater Sci Mater Med 14(6):539–545

    Article  PubMed  Google Scholar 

  121. Viornery C, Guenther HL, Aronsson BO, Pechy P, Descouts P, Gratzel M (2002) Osteoblast culture on polished titanium disks modified with phosphonic acids. J Biomed Mater Res 62(1):149–155

    Article  PubMed  Google Scholar 

  122. Ciapetti G, Granchi D, Verri E, Savarino L, Stea S, Savioli F, Gori A, Pizzoferrato A (1998) False positive results in cytotoxicity testing due to unexpectedly volatile compounds. J Biomed Mater Res 39(2):286–291

    Article  PubMed  Google Scholar 

  123. Grinnell F (2003) Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol 13(5):264–269

    Article  PubMed  Google Scholar 

  124. Zervolea I, Kletsas D, Stathakos D (2000) Autocrine regulation of proliferation and extracellular matrix homeostasis in human fibroblasts. Biochem Biophys Res Commun 276(2):785–790

    Article  PubMed  Google Scholar 

  125. Ozen J, Atay A, Beydemir B, Serdar MA, Ural AU, Dalkiz M, Soysal Y (2005) In vitro ­il-1beta release from gingival fibroblasts in response to pure metals, dental alloys and ceramic. J Oral Rehabil 32(7):511–517

    Article  PubMed  Google Scholar 

  126. Schmalz G, Schuster U, Koch A, Schweikl H (2002) Cytotoxicity of low ph dentin-bonding agents in a dentin barrier test in vitro. J Endod 28(3):188–192

    Article  PubMed  Google Scholar 

  127. Schuster U, Schmalz G, Thonemann B, Mendel N, Metzl C (2001) Cytotoxicity testing with three-dimensional cultures of transfected pulp-derived cells. J Endod 27(4):259–265

    Article  PubMed  Google Scholar 

  128. Vande Vannet B, Hanssens JL, Wehrbein H (2007) The use of three-dimensional oral mucosa cell cultures to assess the toxicity of soldered and welded wires. Eur J Orthod 29(1):60–66

    Article  PubMed  Google Scholar 

  129. Vande Vannet B, Mohebbian N, Wehrbein H (2006) Toxicity of used orthodontic archwires assessed by three-dimensional cell culture. Eur J Orthod 28(5):426–432

    Article  PubMed  Google Scholar 

  130. Meryon SD (1984) The influence of dentine on the in vitro cytotoxicity testing of dental restorative materials. J Biomed Mater Res 18(7):771–779

    Article  PubMed  Google Scholar 

  131. Schmalz G, Schuster U, Thonemann B, Barth M, Esterbauer S (2001) Dentin barrier test with transfected bovine pulp-derived cells. J Endod 27(2):96–102

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris Kletsas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pratsinis, H., Mavrogonatou, E., Papadopoulou, A., Kletsas, D. (2013). In Vitro Assessment of Biocompatibility for Orthodontic Materials. In: Eliades, T. (eds) Research Methods in Orthodontics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31377-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31377-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31376-9

  • Online ISBN: 978-3-642-31377-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics