Skip to main content

A Non-heuristic Dominant Point Detection Based on Suppression of Break Points

  • Conference paper
Image Analysis and Recognition (ICIAR 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7324))

Included in the following conference series:

Abstract

This paper presents a non-heuristic and control parameter independent dominant point detection method. It is based on the suppression of break points and provides a more balanced performance than the recent break point suppression methods. It is made non-heuristic using an analytical error bound for digitizing a line segment. It provides a good combination of compression ratio and error metrics by avoiding both over-fitting and under-fitting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elder, J.H., Goldberg, R.M.: Image editing in the contour domain. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 291–296 (2001)

    Article  Google Scholar 

  2. Ozen, S., Bouganis, A., Shanahan, M.: A fast evaluation criterion for the recognition of occluded shapes. Robotics and Autonomous Systems 55, 741–749 (2007)

    Article  Google Scholar 

  3. Faure, A., Buzer, L., Feschet, F.: Tangential cover for thick digital curves. Pattern Recognition 42, 2279–2287 (2009)

    Article  MATH  Google Scholar 

  4. Kolesnikov, A., Fränti, P.: Data reduction of large vector graphics. Pattern Recognition 38, 381–394 (2005)

    Article  MATH  Google Scholar 

  5. Mokhtarian, F., Mackworth, A.: Scale-based description and recognition of planar curves and two-dimensional shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI 8, 34–43 (1986)

    Article  Google Scholar 

  6. Kolesnikov, A., Fränti, P.: Reduced-search dynamic programming for approximation of polygonal curves. Pattern Recognition Letters 24, 2243–2254 (2003)

    Article  MATH  Google Scholar 

  7. Kolesnikov, A., Fränti, P.: Polygonal approximation of closed discrete curves. Pattern Recognition 40, 1282–1293 (2007)

    Article  MATH  Google Scholar 

  8. Perez, J.C., Vidal, E.: Optimum polygonal approximation of digitized curves. Pattern Recognition Letters 15, 743–750 (1994)

    Article  MATH  Google Scholar 

  9. Teh, C.-H., Chin, R.T.: On the detection of dominant points on digital curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 859–872 (1989) 10.1109/34.31447

    Article  Google Scholar 

  10. Ansari, N., Huang, K.W.: Non-parametric dominant point detection. Pattern Recognition 24, 849–862 (1991) 10.1016/0031-3203(91)90004-o

    Article  Google Scholar 

  11. Ray, B.K., Ray, K.S.: An algorithm for detection of dominant points and polygonal approximation of digitized curves. Pattern Recognition Letters 13, 849–856 (1992)

    Article  Google Scholar 

  12. Latecki, L.J., Lakämper, R.: Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution. Computer Vision and Image Understanding 73, 441–454 (1999) 10.1006/cviu.1998.0738

    Article  Google Scholar 

  13. Ramer, U.: An iterative procedure for the polygonal approximation of plane curves. Computer Graphics and Image Processing 1, 244–256 (1972)

    Article  Google Scholar 

  14. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization 10, 112–122 (1973)

    Article  Google Scholar 

  15. Lowe, D.G.: Three-dimensional object recognition from single two-dimensional images. Artificial Intelligence 31, 355–395 (1987)

    Article  Google Scholar 

  16. Rosin, P.L.: Techniques for assessing polygonal approximations of curves. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 659–666 (1997)

    Article  Google Scholar 

  17. Rosin, P.L.: Assessing the behaviour of polygonal approximation algorithms. Pattern Recognition 36, 505–518 (2002)

    Article  Google Scholar 

  18. Wu, W.Y.: An adaptive method for detecting dominant points. Pattern Recognition 36, 2231–2237 (2003) 10.1016/s0031-3203(03)00087-6

    Article  MATH  Google Scholar 

  19. Marji, M., Siy, P.: Polygonal representation of digital planar curves through dominant point detection - A nonparametric algorithm. Pattern Recognition 37, 2113–2130 (2004)

    Article  Google Scholar 

  20. Masood, A.: Dominant point detection by reverse polygonization of digital curves. Image and Vision Computing 26, 702–715 (2008)

    Article  Google Scholar 

  21. Carmona-Poyato, A., Madrid-Cuevas, F.J., Medina-Carnicer, R., Muñoz-Salinas, R.: Polygonal approximation of digital planar curves through break point suppression. Pattern Recognition 43, 14–25 (2010)

    Article  MATH  Google Scholar 

  22. Bhowmick, P., Bhattacharya, B.B.: Fast polygonal approximation of digital curves using relaxed straightness properties. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 1590–1602 (2007)

    Article  Google Scholar 

  23. Nguyen, T.P., Debled-Rennesson, I.: A discrete geometry approach for dominant point detection. Pattern Recognition 44, 32–44 (2011) 10.1016/j.patcog.2010.06.022

    Article  MATH  Google Scholar 

  24. Prasad, D.K., Leung, M.K.H.: Reliability/Precision Uncertainty in Shape Fitting Problems. In: IEEE International Conference on Image Processing, Hong Kong, pp. 4277–4280 (2010)

    Google Scholar 

  25. Prasad, D.K., Leung, M.K.H.: Polygonal representation of digital curves. In: Stanciu, S.G. (ed.) Digital Image Processing. InTech (2012)

    Google Scholar 

  26. Prasad, D.K., Quek, C., Leung, M.K.H., Cho, S.Y.: A parameter independent line fitting method. In: Asian Conference on Pattern Recognition (ACPR), Beijing, China, pp. 441–445 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Prasad, D.K., Quek, C., Leung, M.K.H. (2012). A Non-heuristic Dominant Point Detection Based on Suppression of Break Points. In: Campilho, A., Kamel, M. (eds) Image Analysis and Recognition. ICIAR 2012. Lecture Notes in Computer Science, vol 7324. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31295-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31295-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31294-6

  • Online ISBN: 978-3-642-31295-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics