Skip to main content

Characterization of Microstructures Before, During and After Densification

  • Chapter
  • First Online:
Sintering

Part of the book series: Engineering Materials ((ENG.MAT.,volume 35))

Abstract

The microstructural characterization of materials is a critical step to understand structure--property relationships in sintered materials. Altering the processing parameters during sintering can lead to variations of the materials microstructure and, hence, their macroscopic properties. This chapter reviews experimental techniques for the atomic resolution characterization of microstructural defects. Emphasis is given to a variety of electron microscopy techniques and how these can be used to gain a more fundamental understanding of sintering behavior, such as defect segregation and grain growth. The recent advent of novel in situ electron microscopy techniques has enabled the atomic-scale investigation of densification mechanisms and their kinetics that occur during sintering. A review of available techniques is presented and first experimental results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Williams, D.B., Carter, C.B.: Transmission Electron Microscopy A Textbook for Materials Science, 2nd edn. Springer, New York (2009)

    Google Scholar 

  2. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C., Echlin, P.E., Lifshin, E., Sawyer, L., Michael, J.: Scanning Electron Microscopy and X-ray Microanalysis, 3rd edn. Kluwer Academic/Plenum Publishers, New York (2003)

    Book  Google Scholar 

  3. Reimer, L.: Scanning Electron Microscopy, Springer-Verlag, Berlin, p. 457. (1985)

    Google Scholar 

  4. Topping, T., Ahn, B., Li, Y., Nutt, S., Lavernia, E.: Metall. Mater. Trans. A 43, 505–519 (2012)

    Google Scholar 

  5. Strecker, A., Bader, U., Kelsch, M., Salzberger, U., Sycha, M., Gao, M., Richter, G., van Benthem, K.: Zeitschrift fur Metallkunde 94(3), 290–297 (2003)

    CAS  Google Scholar 

  6. Anderson, R., Klepeis, S.J.: In A new tripod polisher method for preparing TEM specimens of particles and fibers, Mater. Res. Soc., Pittsburgh, PA, USA., 1997; Anderson, R. M.; Walck, S. D., Eds. Mater. Res. Soc., Pittsburgh, PA, USA., 1997; pp 193–199

    Google Scholar 

  7. Wei, L.-Y., Li, T.: Microsc. Res. Tech. 36, 380–381 (1997)

    Article  CAS  Google Scholar 

  8. Getter, M.E., Ornstein, L.: Phys. Tech. Biol. Res. 3, 627 (1956)

    Google Scholar 

  9. Heidenreich, R.D.J.: Appl. Phys. 20, 993 (1949)

    CAS  Google Scholar 

  10. Giannuzzi, L.A., Stevie, F.A.: Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice. Springer Verlag, New York (2004)

    Google Scholar 

  11. Giannuzzi, L.A., Stevie, F.A.: Micron 30(3), 197–204 (1999)

    Article  Google Scholar 

  12. Volkert, C.A., Minor, A.M.: MRS Bull. 32(5), 389–395 (2007)

    Article  CAS  Google Scholar 

  13. Reimer, L.: Elektronenmikroskopische Untersuchungs-und Präparationsmethoden. Springer-Verlag, Berlin (1959)

    Book  Google Scholar 

  14. Strecker, A., Mayer, J., Baretzky, B., Eigenthaler, U., Gemming, T., Schweinfest, R., Ruhle, M.: J. Electron Microsc. 48(3), 235–244 (1999)

    Article  Google Scholar 

  15. Strecker, A., Salzberger, U., Mayer, J.: Prakt. Metallogr. 30, 482 (1993)

    CAS  Google Scholar 

  16. Reimer, L.: Transmission Electron Microscopy, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  17. Varela, M., Lupini, A.R., van Benthem, K., Borisevich, A.Y., Chisholm, M.F., Shibata, N., Abe, E., Pennycook, S.J.: Annu. Rev. Mater. Res. 35, 539–569 (2005)

    Article  CAS  Google Scholar 

  18. Egerton, R.F.: Electron Energy Loss Spectroscopy in the Electron Microscope, 2nd edn. Plenum Press, New York (1996)

    Google Scholar 

  19. Potton, R.J.: Rep. Prog. Phys. 67(5), 717–754 (2004)

    Article  Google Scholar 

  20. Scherzer, O.: Zeit. Phys. 101, 593--603 (1936)

    Article  Google Scholar 

  21. Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., Lupini, A.R.: J. Electron Microsc. 50, 177–185 (2001)

    Article  CAS  Google Scholar 

  22. Krivanek, O.L., Dellby, N., Lupini, A.R.: Ultramicroscopy 78, 1–11 (1999)

    Article  CAS  Google Scholar 

  23. Scherzer, O.: Optik 2(2), 114–132 (1947)

    CAS  Google Scholar 

  24. Rose, H.: Optik 85(1), 19–24 (1990)

    Google Scholar 

  25. Haider, M., Rose, H., Uhlemann, S., Schwan, E., Kabius, B., Urban, K.: Ultramicroscopy 75(1), 53–60 (1998)

    Article  CAS  Google Scholar 

  26. O’Keefe, M.A., Allard, L.F., Blom, D.A.: J. Electron Microsc. 54(3), 169–180 (2005)

    Article  Google Scholar 

  27. Kisielowski, C., Freitag, B., Bischoff, M., et al.: Microsc. Microanal. 14(5), 469–477 (2008)

    Article  CAS  Google Scholar 

  28. Pennycook, S.J., Chisholm, M.F., Lupini, A.R., Varela, M., van Benthem, K., Borisevich, A.Y., Oxley, M.P., Luo, W., Pantelides, S.T.: Materials Applications of Aberration-Corrected Scanning Transmission Electron Microscopy. In Advances in Imaging and Electron Physics. Elsevier Academic Press Inc, San Diego 153, pp. 327–384 (2008)

    Google Scholar 

  29. Nellist, P.D., Chisholm, M.F., Dellby, N., et al.: Science 305(5691), 1741–1741 (2004)

    Article  CAS  Google Scholar 

  30. Peng, Y.P., Oxley, M.P., Lupini, A.R., et al.: In Spatial resolution and information transfer in scanning transmission electron microscopy. Microscopy and Microanalysis 14, 36–47 (2008)

    CAS  Google Scholar 

  31. Krivanek, O.L., Chisholm, M.F., Nicolosi, V., et al.: Nature 464(7288), 571–574 (2010)

    Article  CAS  Google Scholar 

  32. Oh, S.H., van Benthem, K., Molina, S.I., et al.: Nano Lett. 8(4), 1016–1019 (2008)

    Article  CAS  Google Scholar 

  33. Shibata, N., Painter, G.S., Satet, R.L., et al.: Phys. Rev. B: Condens. Matter 72(14), 4 (2005)

    Article  Google Scholar 

  34. Shibata, N., Pennycook, S.J., Gosnell, T.R., et al.: Nature 428(6984), 730--733 (2004)

    Article  CAS  Google Scholar 

  35. van Benthem, K., Contescu, C.I., Pennycook, S.J., Gallego, N.C.: Single Pd Atoms in Activated Carbon Fibers for Hydrogen Storage. Carbon 49(12), 4059–4063 (2009)

    Google Scholar 

  36. Varela, M., Findlay, S.D., Lupini, A.R., et al. Phys. Rev. Lett. 92(9), 095502 (2004)

    Google Scholar 

  37. Wang, S.W., Borisevich, A.Y., Rashkeev, S.N., et al.: Nat. Mater. 3(4), 274–274 (2004)

    Article  CAS  Google Scholar 

  38. Borisevich, A.Y., Lupini, A.R., Pennycook, S.J.: Proc. Natl. Acad. Sci. U S A 103(9), 3044–3048 (2006)

    Article  CAS  Google Scholar 

  39. Borisevich, A.Y., Lupini, A.R., Travaglini, S., Pennycook, S.J.: J. Electron Microsc. 55(1), 7–12 (2006)

    Article  CAS  Google Scholar 

  40. van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T., Pennycook, S.J.: Appl. Phys. Lett. 87(3), 3 (2005)

    Google Scholar 

  41. van Benthem, K., Lupini, A.R., Oxley, M.P., Findlay, S.D., Allen, L.J., Pennycook, S.J.: Ultramicroscopy 106(11–12), 1062–1068 (2006)

    Article  Google Scholar 

  42. Raj, R., Cologna, M., Francis, J.S.C.: J. Am. Ceram. Soc. 94(7), 1941–1965 (2011)

    Article  CAS  Google Scholar 

  43. Cologna, M., Raj, R.: J. Am. Ceram. Soc. 94(2), 391–395 (2011)

    Article  CAS  Google Scholar 

  44. Kodambaka, S., Hannon, J.B., Tromp, R.M., Ross, F.M.: Nano Lett. 6(6), 1292–1296 (2006)

    Article  CAS  Google Scholar 

  45. Sharma, R.: J. Mater. Res. 20(7), 1695–1707 (2005)

    Article  CAS  Google Scholar 

  46. Kamino, T., Yaguchi, T., Konno, M., et al.: J. Electron Microsc. 54(6), 497–503 (2005)

    Article  CAS  Google Scholar 

  47. de Jonge, N., Peckys, D.B., Kremers, G.J., Piston, D.W.: Proc. Natl. Acad. Sci. U S A 106(7), 2159–2164 (2009)

    Article  Google Scholar 

  48. Allard, L.F., Bigelow, W.C., Jose-Yacaman, M., et al.: Microsc. Res. Tech. 72(3), 208--215 (2009)

    Article  CAS  Google Scholar 

  49. Allard, L.F., Bigelow, W.C., Nackashi, D.P., Damiano, J., Mick, S.E.: Microsc. Microanal. 14(2), 792--793 (2008)

    Article  Google Scholar 

  50. Holland, T.B., Thron, A.M., Bonifacio, C.S., Mukherjee, A.K., van Benthem, K.: Appl. Phys. Lett. 96(24), 243106 (2010)

    Article  Google Scholar 

  51. Minor, A.M., Morris, J.W., Stach, E.A.: Appl. Phys. Lett. 79(11), 1625–1627 (2001)

    Article  CAS  Google Scholar 

  52. Stach, E.A., Freeman, T., Minor, A.M., et al.: Microsc. Microanal. 7(6), 507–517 (2001)

    CAS  Google Scholar 

  53. Kim, J.S., LaGrange, T., Reed, B.W., et al.: Science 321(5895), 1472–1475 (2008)

    Article  CAS  Google Scholar 

  54. LaGrange, T., Campbell, G.H., Reed, B., et al.: Ultramicroscopy 108(11), 1441–1449 (2008)

    Article  CAS  Google Scholar 

  55. Reed, B.W., Armstrong, M.R., Browning, N.D., Campbell, G.H., Evans, J.E., LaGrange, T., Masiel, D.J.: Microsc. Microanal. 15(4), 272–281 (2009)

    Article  CAS  Google Scholar 

  56. Lobastov, V.A., Srinivasan, R., Zewail, A.H.: Proc. Natl. Acad. Sci. U S A 102(20), 7069–7073 (2005)

    Article  CAS  Google Scholar 

  57. Park, H.S., Baskin, J.S., Kwon, O.-H., Zewail, A.H.: Nano Lett. 7(9), 2545–2551 (2007)

    Article  CAS  Google Scholar 

  58. Kim, S., Jain, P., Avila-Paredes, H.J., Thron, A., van Benthem, K., Sen, S.: J. Mater. Chem. 20(19), 3855–3858 (2010)

    Article  CAS  Google Scholar 

  59. Midgley, P.A., Weyland, M.: Ultramicroscopy 96(3–4), 413–431 (2003)

    Article  CAS  Google Scholar 

  60. Lange, F.F.: J. Am. Ceram. Soc. 56(10), 518–522 (1973)

    Article  CAS  Google Scholar 

  61. Sun, E.Y., Becher, P.F., Hsueh, C.H., et al.: Acta Mater. 47(9), 2777--2785 (1999)

    Article  CAS  Google Scholar 

  62. Kramer, M., Hoffmann, M.J., Petzow, G.: J. Am. Ceram. Soc. 76(11), 2778--2784 (1993)

    Article  Google Scholar 

  63. Painter, G.S., Averill, F.W., Becher, P.F., Shibata, N., van Benthem, K., Pennycook, S.J.: Phys. Rev. B: Condens. Matter 78(21), 9 (2008)

    Article  Google Scholar 

  64. Winkelman, G.B., Dwyer, C., Hudson, T.S., et al.: Philos. Mag. Lett. 84(12), 755--762 (2004)

    Article  CAS  Google Scholar 

  65. van Benthem, K., Painter, G.S., Averill, F.W., et al.: Appl. Phys. Lett. 92(16), 163110 (2008)

    Article  Google Scholar 

  66. Asoro, M.A., Kovar, D., Shao-Horn, Y., et al.: Nanotechnology 21(2), 025701 (2010)

    Article  CAS  Google Scholar 

  67. Jones, R.D., Rowlands, D., Rossiter, P.L.: Scripta Metall. 5(10), 915--919 (1971)

    Article  CAS  Google Scholar 

  68. Marcos, M.L., González Velasco, J.: Chem. Phys. Lett. 283(5--6), 391--394 (1998)

    Article  CAS  Google Scholar 

  69. Matsuno, M., Bonifacio, C.S., Holland, T.B., Van Benthem, K.: (in preparation) (2011)

    Google Scholar 

  70. Waser, R.: Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices, 2nd edn., p. 1002. Wiley, New York (2005)

    Google Scholar 

  71. Bonifacio, C.S., Thron, A.M., Bersuker, G., van Benthem, K.: Microsc. Microanal. 16(S2), 1298--1299 (2010)

    Google Scholar 

  72. Bersuker, G., Heh, D., Park, H., Khanal, P., Larcher, L., Padovani, A., Lenahan, P.M., Ryan, J.T., Lee, B.H., Tseng, H., Jammy, R.: In Breakdown in the metal/high-k gate stack: Identifying the “weak link” in the multilayer dielectric. In: International Electron Devices Meeting (IEDM) Technical Digest, 2008, pp. 791--794 (2008)

    Google Scholar 

  73. Bonifacio, C.S., van Benthem, K.: J. Appl. Phys. (2012) submitted

    Google Scholar 

  74. Munir, Z.A.: J. Mater. Sci. 14(11), 2733--2740 (1979)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Discussions with Drs. T.B. Holland, A.K. Mukherjee, Z.A. Munir, J. Groza (UC Davis) and S. Schwartz and O. Guillon (TU Darmstadt) are gratefully acknowledged. Help provided by Dr. T. LaGrange (LLNL) for the acquisition of orientation images by TEM was invaluable. The author recognizes his graduate and undergraduate students for their diligent work on the presented projects, specifically Ms. C.S. Bonifacio, Mr. H. Ghadialy, Ms. M. Matsuno, Mr. J. Rufner, and Mr. A. Thron. This work was funded partially by UC Davis start-up funds and a CAREER award from the US National Science Foundation (DMR-0955638).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus van Benthem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Benthem, K. (2012). Characterization of Microstructures Before, During and After Densification. In: Castro, R., van Benthem, K. (eds) Sintering. Engineering Materials, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31009-6_10

Download citation

Publish with us

Policies and ethics