Skip to main content

Plants and Their Ectomycorrhizosphere: Cost and Benefit of Symbiotic Soil Organisms

  • Chapter
  • First Online:
Growth and Defence in Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 220))

Abstract

The ectomycorrhizosphere is a heterogeneous and variable micro-environment, predominantly established by variously formed extramatrical mycelia (EMM) that emanate from the hyphal mantle of ectomycorrhizae that envelopes the short roots. The mycelia differ fungal species-dependent regarding range, density and differentiation. Contingent upon the amount of sugars available for the ectomycorrhizal fungi — controlled, e.g. by elevated above-ground concentrations of ozone or carbon dioxide exposure to host trees — an ectomycorrhizal community can change its total amount of EMM, leading to changes in space occupation, and consequently, to alterations in its capacity to explore and exploit soil resources. We quantify the exploration type specific space occupation under the influence of twice-ambient ozone concentrations and estimate the carbon cost the tree has to pay for. Further, we address enzymatic capacities of ectomycorrhizal communities and focus on bacteria being associated with the mycelium. Finally we discuss the impact of soil micro-niches on ectomycorrhizal communities and mention briefly the ectomycorrhizal competition with each other and with saprotrophic fungi.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-3-642-30645-7_21

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1985) Zur Ökologie der Mykorrhizapilze, vol 97, Bibliotheca Mycologica. Cramer, Vaduz

    Google Scholar 

  • Agerer R (1987–2008) Colour atlas of ectomycorrhizae. 1st–14th delivery. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DA, Varma AK (eds) Techniques for the study of mycorrhiza, vol 23, Methods in microbiology. Academic, San Diego, pp 25–73

    Google Scholar 

  • Agerer R (1993) Mycorrhizae: ectomycorrhizae and ectendomycorrhizae. Prog Bot 54:505–529

    Google Scholar 

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma K, Hock B (eds) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 685–734

    Google Scholar 

  • Agerer R (1999) Never change a functionally successful principle: the evolution of Boletales s. l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera 6:5–91

    Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Google Scholar 

  • Agerer R (2002) The ectomycorrhiza Piceirhiza internicrassihyphis: a weak competitor of Cortinarius obtusus? Mycol Prog 1:291–299

    Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Google Scholar 

  • Agerer R (2007) Diversity of ectomycorrhizae as seen from below and above ground: the exploration types. Z Mykol 73:61–88

    Google Scholar 

  • Agerer R (2011) Asexual reproduction of Hygrophorus olivaceoalbus by intracellular microsclerotia in root cells of Picea abies – a winner of ozone stress? Mycol Prog. 11:425–435 doi:10.1007/s11557-011-0757-y

  • Agerer R, Göttlein A (2003) Correlations between projection area of ectomycorrhizae and H2O extractable nutrients in organic soil layers. Mycol Prog 2:45–52

    Google Scholar 

  • Agerer R, Raidl S (2004) Distance-related semi-quantitative estimation of the extramatrical ectomycorrhizal mycelia of Cortinarius obtusus and Tylospora asterophora. Mycol Prog 3:57–64

    Google Scholar 

  • Agerer R, Rambold G (2004–2011) DEEMY – an information system for characterization and determination of ectomycorrhizae. München, Germany.http://www.deemy.de [first posted on 2004-06-01; most recent update: 2011-01-10]

  • Agerer R, Schloter M, Hahn C (2000) Fungal enzymatic activity in fruitbodies. Nova Hedwigia 71:315–336

    Google Scholar 

  • Agerer R, Grote R, Raidl S (2002) The new method ‘micromapping’, a means to study species-specific associations and exclusions of ectomycorrhizae. Mycol Prog 1:155–166

    Google Scholar 

  • Aguilera LM, Griffiths RP, Caldwell BA (1993) Nitrogen in ectomcycorrhizal mat and non-mat soils of different-age Douglas-fir forests. Soil Biol Biochem 25:1015–1019

    Google Scholar 

  • Alberton O, Kuyper TW (2009) Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Glob Change Biol 15:166–175

    Google Scholar 

  • Alberton O, Kuyper TW, Corissen A (2007) Competition for nitrogen between Pinus sylvestris and ectomycorrhizal fungi generates potential for negative feedback under elevated CO2. Plant Soil 296:159–172

    CAS  Google Scholar 

  • Andersen CP (2003) Source-sink balance and carbon allocation belowground in plants exposed to ozone. New Phytol 157:213–228

    CAS  Google Scholar 

  • Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2006) Microbial colonization of beech and spruce litter - influence of decomposition site and plant litter species on the diversity of microbial community. Microb Ecol 52:127–135

    PubMed  Google Scholar 

  • Aneja MK, Sharma S, Fleischmann F, Stich S, Heller W, Bahnweg G, Munch JC, Schloter M (2007) Influence of ozone on litter quality and its subsequent effects on the initial structure of colonizing microbial communities. Microb Ecol 54:151–160

    PubMed  Google Scholar 

  • Arao T (1999) In situ detection of changes in soil bacterial and fungal activities by measuring 13C incorporation into soil phospholipids fatty acids from 13C acetate. Soil Biol Biochem 31:1015–1020

    CAS  Google Scholar 

  • Bakken LR, Oisen RA (1983) Buoyant densities and dry-matter contents of microorganisms: conversion of a measured biovolume into biomass. Appl Environ Microbiol 45:1188–1195

    PubMed  CAS  PubMed Central  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197–206

    PubMed  Google Scholar 

  • Brand F, Taylor AFS, Agerer R (1992) Quantitative Erfessung bekannter Ektomykorrhizen in Fichtenversuchsfiächen nach Behandlung mit saurer Beregnung und Kalkung: Die Reakton der natürlichen Ektmykorrhiza-Population der Fichte auf saure Beregnung und Kalkung. Bericht BMFT-Projekt Nr. 0339175F

    Google Scholar 

  • Baudoin E, Benizri E, Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem 35:1183–1192

    CAS  Google Scholar 

  • Begon M, Harper JJ, Townsend CR (1986) Ecology. Blackwell, Oxford

    Google Scholar 

  • Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409

    CAS  Google Scholar 

  • Bertaux J, Schmid M, Hutzler P, Hartmann A, Garbaye J, Frey-Klett P (2005) Occurrence and distribution of endobacteria in the plant-associated mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Environ Microbiol 7:1786–1795

    PubMed  CAS  Google Scholar 

  • Blom JM, Vannini A, Vettraino AM, Hale MD, Godbold DL (2009) Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20:25–38

    PubMed  Google Scholar 

  • Bomberg M, Timonen S (2009) Effect of tree species and mycorrhizal colonisation on the archaeal population of boreal forest rhizospheres. Appl Environ Microbiol 75:308–315

    PubMed  CAS  PubMed Central  Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659

    PubMed  Google Scholar 

  • Branzanti MB, Rocca E, Zambonelli A (1994) Influenza di funghi ectomicorrizici su Phytophthora cambivora e P. cinnamomi del castagno. Mycol Ital 1994:47–52

    Google Scholar 

  • Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109

    Google Scholar 

  • Butler JL, Williams MA, Bottomley PJ, Myrold DD (2003) Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Microbiol 69:6793–6800

    PubMed  CAS  PubMed Central  Google Scholar 

  • Calvaruso C, Turpault M-P, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54:567–577

    PubMed  Google Scholar 

  • Chapin SF III, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, Berlin

    Google Scholar 

  • Chakraborty S, Theodorou C, Bowen GD (1985) The reduction of root colonization by mycorrhizal fungi by mycophagous amoeba. Can J Microbiol 31:295–297

    Google Scholar 

  • Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O3. Oecologia 147:143–154

    PubMed  Google Scholar 

  • Colpaert JV, van Tichelen KK (1996) Mycorrhizas and environmental stress. In: Frankland JC, Magan N, Gadd GM (eds) Fungi and environmental change. Symposium of the British Mycological Society. Cambridge University Press, Cambridge, pp 109-128

    Google Scholar 

  • Courty PE, Pritsch K, Schloter M, Hartmann A, Garbaye J (2005) Activity profiling of ectomycorrhiza communities in two forest soils using multiple enzymatic tests. New Phytol 167:309–319

    PubMed  CAS  Google Scholar 

  • Courty P-E, Pouysegur R, Buée M, Garbaye J (2006) Laccase and phosphatase activities of the dominant ectomycorrhizal types in a lowland oak forest. Soil Biol Biochem 38:1219–1222

    CAS  Google Scholar 

  • Courty P-E, Bréda N, Garbaye J (2007) Relation between oak tree phenology and the secretion of organic matter degrading enzymes by Lactarius quietus ectomycorrhizas before and during bud break. Soil Biol Biochem 39:1655–1663

    CAS  Google Scholar 

  • Courty P-E, Labbé J, Kohler A, Marçais B, Bastien C, Churin JL, Garbaye J, Le Tacon F (2011) Effect of poplar genotypes on mycorrhizal infection and secreted enzyme activities in mycorrhizal and non-mycorrhizal roots. J Exp Bot 62:249–260

    PubMed  CAS  PubMed Central  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund J (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in South Sweden. Can J Bot 75:1223–1335

    Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535

    CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature (London) 287:834–836

    Google Scholar 

  • Duponnois R, Garbaye J (1991) Mycorrhiza helper bacteria associated with Douglas fir - Laccaria laccata symbiosis: effects in aseptic and in glasshouse conditions. Ann Forest Sci 48:239–251

    Google Scholar 

  • Dyckmans J, Flessa H, Brinkmann K, Mai C, Polle A (2002) Carbon and nitrogen dynamics in acid detergent fibre lignins of beech (Fagus sylvatica L.) during the growth phase. Plant Cell Environ 25:469–478

    CAS  Google Scholar 

  • Ekblad A, Wallander H, Carlsson R, Huss-Danell K (1995) Fungal biomass in roots and extramatrical mycelium in relation to macronutrients and plant biomass of ectomycorrhizal Pinus sylvestris and Alnus incana. New Phytol 131:443–451

    Google Scholar 

  • Esperschütz J, Pritsch K, Gattinger A, Buegger F, Winkler JB, Munch JC, Schloter M (2009a) Microbial response to exudates in the rhizosphere of young beech trees (Fagus sylvatica L.) after dormancy. Soil Biol Biochem 41:976–1985

    Google Scholar 

  • Esperschütz J, Pritsch K, Gattinger A, Welzl G, Haesler J, Buegger F, Winkler JB, Munch JC, Schloter M (2009b) Influence of chronic ozone stress on carbon translocation pattern into rhizosphere microbial communities of beech trees (Fagus sylvatica L.) during a growing season. Plant Soil 323:85–95

    Google Scholar 

  • Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J Forest Res 9:245–256

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    PubMed  CAS  Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J Forest Sci 5:35–41

    Google Scholar 

  • Gebhardt S (2005) Räumliche Struktur und zeitliche Dynamik von Ektomykorrhizagemeinschaften in Roteichenökosystemen der Niederlausitz, Cottbuser Schriften. vol 34, Brandenburgische Technische Universität Cottbus, Cottbus

    Google Scholar 

  • Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium. New Phytol 170:381–390

    PubMed  Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated CO2. New Phytol 137:433–440

    CAS  Google Scholar 

  • Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration changes ectomycorrhizal morphotype assemblages in Betula papyrifera. Tree Physiol 17:347–350

    PubMed  Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated CO2. New Phytol 146:163–168

    CAS  Google Scholar 

  • Grayston SJ, Vaughan D, Jones D (1996) Rhizosphere carbon flow in trees, in comparison with annual plants: the importance of root exudation and its impact on microbial activity and nutrient availability. Appl Soil Ecol 5:29–56

    Google Scholar 

  • Grebenč T, Kraigher H (2007) Changes in the community of ectomycorrhizal fungi and increased fine root number under adult beech trees chronically fumigated with double ambient ozone. Plant Biol 9:279–287

    PubMed  Google Scholar 

  • Griffiths RP, Ingham ER, Caldwell BA, Castellano MA, Cromack K (1991) Microbial characteristics of ectomycorrhizal mat communities in Oregon and California (USA). Biol Fertil Soils 11:196–202

    Google Scholar 

  • Griffiths RP, Baham JE, Caldwell BA (1994) Soil solution chemistry of ectomycorrhizal mats in forest soil. Soil Biol Biochem 26:331–337

    CAS  Google Scholar 

  • Haberer K, Grebenc T, Alexou M, Gessler A, Kraigher H, Rennenberg H (2007) Effects of long-term free-air ozone fumigation on d15N and total N in Fagus sylvatica and associated mycorrhizal fungi. Plant Biol 9:242–252

    PubMed  CAS  Google Scholar 

  • Häberle K-H, Werner H, Fabian P, Pretzsch H, Reiter I, Matyssek R (1999) ‘Free-air’ ozone fumigation of mature forest trees: a concept for validating AOT40 under stand conditions. In: Fuhrer J, Achermann B (eds) Critical level for ozone – level II. Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, pp 133–137

    Google Scholar 

  • Hasselquist NJ, Varagas R, Allen MF (2010) Using soil sensing technology to examine interactions and controls between ectomycorrhizal growth and environmental factors on soil CO2 dynamics. Plant Soil 331:17–29

    CAS  Google Scholar 

  • Hedh J, Wallander H, Erland S (2008) Ectomycorrhizal mycelial species composition in apatite amended and non amended mesh bags buried in a phosphorus poor spruce forest. Mycol Res 112:681–688

    PubMed  CAS  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderer Berücksichtigung der Gründüngung und Brache. Arb DLG 98:59–78

    Google Scholar 

  • Ingham ER, Massicotte HB (1994) Protozoan communities around conifer roots colonized by ectomycorrhizal fungi. Mycorrhiza 5:53–61

    Google Scholar 

  • Kammerbauer H, Agerer R, Sandermann H (1989) Studies on ectomycorrhiza XXII. Mycorrhizal rhizomorphs of Thelephora terrestris and Pisolithus tinctorius in association with Norway spruce (Picea abies): formation in vitro and translocation of phosphate. Trees 3:78–84

    Google Scholar 

  • Kasurinen A, Keinänen MM, Kaipainen S, Nilsson L-O, Vapaavuori E, Kontro MH, Holopainen T (2005) Below-ground responses of silver birch trees exposed to elevated CO2 and O3 levels during three growing seasons. Glob Change Biol 11:1167–1169

    Google Scholar 

  • Kennedy PG, Bruns TD (2005) Priority effects determine the outcome of ectomycorrhizal competition between two Rhizopogon species colonizing Pinus radiata seedlings. New Phytol 166:631–638

    PubMed  Google Scholar 

  • King JS, Pregitzer KS, Zak DR, Sober J, Isebrands JG, Dickson RE, Hendrey GR, Karnosky DF (2001) Fine-root biomass and fluxes of soil carbon in young stands of paper birch and trembling aspen as affected by elevated atmospheric CO2 and tropospheric O3. Oecologia 128:237–250

    Google Scholar 

  • Koch N, Andersen CP, Raidl S, Agerer R, Matyssek R, Grams TEE (2007) Temperature-respiration relationships differ in mycorrhizal and non-mycorrhizal root systems of Picea abies (L.) Karst. Plant Biol 9:545–549

    PubMed  CAS  Google Scholar 

  • Korkama T, Fritze H, Pekkanen A, Pennanen T (2006) Interactions between extraradical ectomycorrhizal mycelia, microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol 173:798–807

    Google Scholar 

  • Kozlowski TT, Krammer PJ, Pallardy SG (1991) The physiological ecology of woody plants. Academic, San Diego

    Google Scholar 

  • Kuzyakov Y (2002) Review: factors affecting rhizosphere priming effects. J Plant Nutr Soil Sci Z Pflanzenernahr Bodenkd 165:382–396

    CAS  Google Scholar 

  • Leake JR, Donnelly DP, Boddy L (2002) Interactions between ectomycorrhizal and saprotrophic fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies vol 157 Springer, Berlin, pp 346–372

    Google Scholar 

  • Leake J, Johnson D, Donelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystems. Can J Bot 82:1016–1045

    Google Scholar 

  • Li CY, Massicotte HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40

    CAS  Google Scholar 

  • Liese W (1964) Über den Abbau verholzter Zellwände durch Moderfäulepilze. Holz Roh Werkstoff 22:289–295

    Google Scholar 

  • Liese W (1970) Ultrastructural aspects of woody tissue disintegration. Ann Rev Phytopathol 8:231–258

    Google Scholar 

  • Lindahl B, Stenlid J, Olsson S, Finlay R (1999) Translocation of 32p between interacting mycelia of a wood-decomposing fungus and ectomycorrhizal fungi in microcosm systems. New Phytol 144:183–193

    CAS  Google Scholar 

  • Lindahl B, Stenlid J, Finlay R (2001) Effects of resource availability on mycelial interactions and 32P transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms. FEMS Microbiol Ecol 38:43–52

    CAS  Google Scholar 

  • Luedemann G, Matyssek R, Fleischmann F, Grams TEE (2005) Acclimation to ozone affects host/pathogen interaction and competitiveness for nitrogen in juvenile Fagus sylvatica and Picea abies trees infected with Phytophthora citricola. Plant Biol 7:640–649

    PubMed  CAS  Google Scholar 

  • Luedemann G, Matyssek R, Winkler J, Grams TEE (2009) Contrasting ozone × pathogen interaction as mediated through competition between juvenile European beech (Fagus sylvatica) and Norway spruce (Picea abies). Plant Soil 323:47–60

    CAS  Google Scholar 

  • Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10

    CAS  Google Scholar 

  • Markkola AM, Othonen R, Tarvainen O, Ahonen-Jonnarth U (1995) Estimates of fungal biomass in Scots pine stands on an urban pollution gradient. New Phytol 131:139–147

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Marx DH, Davey CB (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. III. Resistance of aseptically formed mycorrhizae to infection by Phytophthora cinnamomi. Phytopathology 59:549–558

    Google Scholar 

  • Meyer FH (1962) Die Mykorrhiza der Waldbäume. Mitt Deutsch Dendrol Ges 62:55–59

    Google Scholar 

  • Mitchell MJ, Parkinson D (1976) Fungal feeding of orbatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57:02–312

    Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278

    Google Scholar 

  • Nikolova PS, Andersen CP, Blaschke H, Matyssek R, Häberle K-H (2010) Belowground effects of enhanced tropospheric ozone and drought in a beech/ spruce forest (Fagus sylvatica L./Picea abies [L.] Karst). Environ Pollut 158:1071–1078

    PubMed  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system, Sudies in ecology. vol 4, Blackwell, Oxford

    Google Scholar 

  • Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungai communities. Ecology 87:2278–2287

    PubMed  Google Scholar 

  • Paris F, Botton B, Lapeyrie F (1996) In vitro weathering of phlogopite by etomycorrizal fungi. II. Effect of K+ and Mg2+ deficiency and N sources on accumulation of oxalate and H+. Plant Soil 179:141–150

    CAS  Google Scholar 

  • Parladé J, Alvarez JF (1993) Coinoculation of aseptically grown Douglas fir with pairs of ectomycorrhizal fungi. Mycorrhiza 3:93–96

    Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    CAS  Google Scholar 

  • Phillips DL, Johnson MG, Tingey DT, Storm MJ (2009) Elevated CO2 and O3 effects on fine-root survivorship in ponderosa pine mesocosms. Oecologia 160:827–837

    PubMed  Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus etomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Google Scholar 

  • Pritsch K, Courty P, Churin J-L, Cloutier-Hurteau B, Ali M, Damon C, Duchemin M, Egli S, Ernst J, Fraissinet-Tachet L, Kuhar F, Legname E, Marmeisse R, Müller A, Nikolova P, Peter M, Plassard C, Richard F, Schloter M, Selosse M-A, Franc A, Garbaye J (2011) Optimized assay and storage conditions for enzyme activity profiling of ectomycorrhizae. Mycorrhiza 21:589–600

    PubMed  CAS  Google Scholar 

  • Pritsch K, Garbaye J (2011) Enzyme secretion by ECM-fungi and exploitation of mineral nutrients from soil organic matter. Ann Forest Sci 68:25–32

    Google Scholar 

  • Pritsch K, Raidl S, Marksteiner E, Blaschke H, Agerer R, Schloter M, Hartmann A (2004) A rapid and highly sensitive method for measuring enzyme activities in single mycorrhizal tips using 4-methylumbelliferone-labelled fluorogenic substrates in a microplate system. J Microbiol Methods 58:233–241

    PubMed  CAS  Google Scholar 

  • Pritsch K, Luedemann G, Matyssek R, Hartmann A, Schloter M, Scherb H, Grams TEE (2005) Mycorrhizosphere responsiveness to atmospheric ozone and inoculation with Phytophthora citricola in a phytotron experiment with spruce/beech mixed cultures. Plant Biol 7:718–727

    PubMed  CAS  Google Scholar 

  • Pritsch K, Günthardt-Goerg MS, Munch JC, Schloter M (2006) Influence of heavy metals and acid rain on enzymatic activities in the mycorrhizosphere of model forest ecosystems. Water Snow Landscape Res 80:289–304

    Google Scholar 

  • Pritsch K, Esperschütz J, Haesler F, Raidl S, Winkler B, Schloter M (2009) Structure and activities of ectomycorrhizal and microbial communities in the rhizosphere of Fagus sylvatica under ozone and pathogen stress in a lysimeter study. Plant Soil 323:97–109

    CAS  Google Scholar 

  • Raidl S (1997) Studien zur Ontogenie an Rhizomorphen von Ektomykorrhizen, Bibliotheca Mycologica. vol 169, Cramer, Berlin, pp 1–184

    Google Scholar 

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning. An integrative plant-fungal process. Chapman & Hall, New York, pp 102–133

    Google Scholar 

  • Rey A, Jarvis PG (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Ann Bot 80:809–816

    Google Scholar 

  • Rillig CM, Treseder KK, Allen MF (2002) Global change and mycorrhizal fungi. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology, Ecological studies. vol 157, Springer, Berlin, pp 135–160

    Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Rineau F, Garbaye J (2009) Does forest liming impact the enzymatic profiles of ectomycorrhizal communities through specialized fungal symbionts? Mycorrhiza 19:493–500

    PubMed  CAS  Google Scholar 

  • Rosling A, Rosenstock N (2008) Ectomycorrhizal fungi in mineral soil. Miner Mag 72:127–130

    CAS  Google Scholar 

  • Rousseau JV, Sylvia DM, Fox AJ (1994) Contribution of ectomycorrhiza to the potential nutrient-absorbing surface of pine. New Phytol 128:639–644

    Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rygiewicz PT, Andersen CP (1994) Mycorrhiza alter quality and quantity of carbon allocated below ground. Nature (London) 369:58–60

    Google Scholar 

  • Rygiewicz PT, Johnson MG, Ganio LM, Tingey DT, Storm MJ (1997) Lifetime and temporal occurrence of ectomycorrhizae on ponderosa pine (Pinus ponderosa Laws.) seedlings grown under varied atmospheric CO2 and nitrogen levels. Plant Soil 189:275–287

    CAS  Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J Forest Res 127:347–357

    Google Scholar 

  • Schelkle M, Ursic M, Farquhar M, Peterson RL (1996) The use of laser scanning confocal microscopy to characterize mycorrhizas of Pinus strobus L. and to localize associated bacteria. Mycorrhiza 6:431–440

    Google Scholar 

  • Schmid R, Liese W (1964) Über die mikromorphologischen Veränderungen der Zellwandstrukturen von Buchen- und Fichtenholz beim Abbau durch Polyporus versicolor (L.) Fr. Archiv Mikrobiol 47:260–276

    Google Scholar 

  • Schramm JR (1966) Plant colonization studies on black wastes from anthracite mining in Pennsylvania. Trans Am Philos Soc 56:5–189

    Google Scholar 

  • Schubert R, Raidl S, Funk R, Bahnweg G, Müller-Starck G, Agerer R (2003) Quantitative detection of agar-cultivated and rhizotron-grown Piloderma croceum Erikss. & Hjortst. by ITS-based fluorescent PCR. Mycorrhiza 13:159–165

    PubMed  CAS  Google Scholar 

  • Simard SW, Durall DM, Jones MD (2002) Carbon and nutrient fluxes within and between mycorrhizal plants. In: van der Heijden MGA, Sanders IR (eds) Mycorrhzal ecology, Ecological studies. vol 157, Springer, Berlin, pp 33–74

    Google Scholar 

  • Singh BK, Munro S, Potts JM, Millard P (2007) Influence of grass species and soil type on rhizosphere microbial community structure in grassland soils. Appl Soil Ecol 36:147–155

    Google Scholar 

  • Sittig U (1999) Zur saisonalen Dynamik von Ektomykorrhizen der Buche (Fagus sylvatica L.). Ber Forsch Waldökosyst 162:1–119

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smits MM, Bonneville S, Haward S, Leake JR (2008) Ectomycorrhizal weathering, a matter of scale? Miner Mag 72:131–134

    CAS  Google Scholar 

  • Tedersoo L, Kõjalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165

    CAS  Google Scholar 

  • Theuerl S, Buscot F (2010) Laccases: toward disentangling their diversity and functions in relation to soil organic matter cycling. Biol Fertil Soils 46:215–225

    CAS  Google Scholar 

  • Timonen S, Hurek T (2006) Characterization of culturable bacterial populations associating with Pinus sylsvestris - Suillus bovinus mycorrhizospheres. Can J Microbiol 52:769–778

    PubMed  CAS  Google Scholar 

  • Timonen S, Jørgensen K, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of the Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513

    CAS  Google Scholar 

  • Timonen S, Christensen S, Ekelund F (2004) Distribution of protozoa in scots pine mycorrhizospheres. Soil Biol Biochem 36:1087–1093

    CAS  Google Scholar 

  • Tingey DT, Phillips DL, Johnson MG (2000) Elevated CO2 and conifer roots: effects on growth, life span and turnover. New Phytol 147:87–103

    CAS  Google Scholar 

  • van Schöll L, Hoffland E, van Beeren N (2006) Organic anion exudation by ectomycorrhizal fungi and Pinus sylvestris in response to nutrient deficiencies. New Phytol 170:153–163

    PubMed  Google Scholar 

  • Vogt KA, Grier CC, Meier CE, Edmonds RL (1982) Mycorrhizal role in net primary production and nutrient cycling in Abies amabilis ecosystems in western Washington. Ecology 63:370–380

    Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonised by different ectomycorrhizal fungi. Plant Soil 218:249–256

    CAS  Google Scholar 

  • Wallander H, Nilsson LO, Hagerberg D, Bååth E (2001) Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. New Phytol 151:753–760

    CAS  Google Scholar 

  • Wallander H, Mahmood S, Hagerberg D, Johansson L, Pallon J (2003) Elemental composition of ectomycorrhizal mycelia identified by PCR-RFLP analysis and grown in contact with apatite or wood ash in forest soil. FEMS Microbiol Ecol 44:57–65

    PubMed  CAS  Google Scholar 

  • Weigt R (2010) Effects of elevated ground-level ozone on nitrogen acquisition of mature European beech (Fagus sylvatica) and Norway spruce (Picea abies) trees. Doctoral thesis, Weihenstephan Center of Life Sciences, TU München

    Google Scholar 

  • Weigt R, Raidl S, Verma R, Rodenkirchen H, Göttlein A, Agerer R (2010) Effects of twice-ambient carbon dioxide and nitrogen amendment on biomass, nutrient contents and carbon costs of Norway spruce seedlings as influenced by mycorrhization with Piloderma croceum and Tomentellopsis submollis. Mycorrhiza 21:375–391

    PubMed  Google Scholar 

  • Weigt R, Verma R, Raidl S, Agerer R (2012) Exploration type specific standard values of extramatrical mycelium - a step towards assessing ectomycorrhizal space occupation and biomass in natural soil. Mycol Prog 11:287–297, ‘Erratum’

    Google Scholar 

  • Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycorrhiza 13:41–47

    PubMed  Google Scholar 

  • Wöllecke J (2001) Charakterisierung der Mykorrhizazönosen zweier Kiefernforste unterschiedlicher Trophie, Cottbuser Schriften zu Bodenschutz und Rekultivierung. vol 17, Brandenburgische Technische Universität Cottbus, Cottbus

    Google Scholar 

  • Wu B, Nara K, Hogetsu T (1999) Competition between ectomycorrhizal fungi colonizing Pinus densiflora. Mycorrhiza 9:151–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Agerer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Agerer, R. et al. (2012). Plants and Their Ectomycorrhizosphere: Cost and Benefit of Symbiotic Soil Organisms. In: Matyssek, R., Schnyder, H., Oßwald, W., Ernst, D., Munch, J., Pretzsch, H. (eds) Growth and Defence in Plants. Ecological Studies, vol 220. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30645-7_10

Download citation

Publish with us

Policies and ethics