Skip to main content

Ranking and Sparsifying a Connection Graph

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7323))

Abstract

Many problems arising in dealing with high-dimensional data sets involve connection graphs in which each edge is associated with both an edge weight and a d-dimensional linear transformation. We consider vectorized versions of the PageRank and effective resistance which can be used as basic tools for organizing and analyzing complex data sets. For example, the generalized PageRank and effective resistance can be utilized to derive and modify diffusion distances for vector diffusion maps in data and image processing. Furthermore, the edge ranking of the connection graphs determined by the vectorized PageRank and effective resistance are an essential part of sparsification algorithms which simplify and preserve the global structure of connection graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the 20th ACM Symposium on Principles of Database Systems, pp. 274–281 (2001)

    Google Scholar 

  2. Agarwal, S., Snavely, N., Simon, I., Seitz, S.M., Szeliski, R.: Building Rome in a Day. In: Proceedings of the 12th IEEE International Conference on Computer Vision, pp. 72–79 (2009)

    Google Scholar 

  3. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of the 47th IEEE Symposium on Founation of Computer Science, pp. 475–486 (2006)

    Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge University Press (2010)

    Google Scholar 

  5. Benczúr, A.A., Karger, D.R.: Approximating s-t minimum cuts in Õ(n 2) time. In: Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 47–55 (1996)

    Google Scholar 

  6. Berkhin, P.: Bookmark-coloring approach to personalized pagerank computing. Internet Mathematics 3, 41–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1-7), 107–117 (1998)

    Article  Google Scholar 

  8. Chung, F., Radcliffe, M.: On the spectra of general random graphs. Electronic Journal of Combinatorics 18(1), 215–229 (2011)

    MathSciNet  Google Scholar 

  9. Chung, F., Sternberg, S.: Laplacian and vibrational spectra for homogeneous graphs. J. Graph Theory 16, 605–627 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cristofides, D., Markström, K.: Expansion properties of random Cayley graphs and vertex transitive graphs via matrix martingales. Random Structures Algorithms 32(8), 88–100 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cucuringu, M., Lipman, Y., Singer, A.: Sensor network localization by eigenvector synchronization over the Euclidean group. ACM Transactions on Sensor Networks (in press)

    Google Scholar 

  12. Firat, A., Chatterjee, S., Yilmaz, M.: Genetic clustering of social networks using random walks. Computational Statistics and Data Analysis 51(12), 6285–6294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fouss, F., Pirotte, A., Renders, J.-M., Saerens, M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. Knowledge and Data Engineering 19(3), 355–369 (2007)

    Article  Google Scholar 

  14. Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn., pp. 257–258. Johns Hopkins, Baltimore (1996)

    MATH  Google Scholar 

  15. Hadani, R., Singer, A.: Representation theoretic patterns in three dimensional cryo-electron microscopy I - the intrinsic reconstitution algorithm. Annals of Mathematics 174(2), 1219–1241 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herbster, M., Pontil, M., Rojas, S.: Fast Prediction on a Tree. In: Proceedings of the Neural Information Processing Systems Foundation, pp. 657–664 (2008)

    Google Scholar 

  17. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th World Wide Web Conference WWW, pp. 271–279 (2003)

    Google Scholar 

  18. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2002)

    Google Scholar 

  19. Karger, D.R.: Random sampling in cut, flow, and network design problems. Mathematics of Operations Research 24(2), 383–413 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Karger, D.R.: Using randomized sparsification to approximate minimum cuts. In: Proceedings of the 15th ACM Symposium on Discrete Algorithms, pp. 424–432 (1994)

    Google Scholar 

  21. Karger, D.R.: Minimum cuts in near-linear time. Journal of the ACM 47(1), 46–76 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kirchhoff, F.: Über die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Verteilung galvanischer Ströme geführt wird. Ann. Phys. Chem. 72, 497–508 (1847)

    Google Scholar 

  23. Koutis, I., Miller, G.L., Peng, R.: Approaching Optimality for Solving SDD Linear Systems. In: Proceedings of 51st IEEE Symposium on Foundations of Computer Science, pp. 235–244 (2010)

    Google Scholar 

  24. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  25. Penrose, R.: A generalized inverse for matrices. Cambridge Philosophical Society 51, 406–413 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  26. Recht, B.: Simpler approach to matrix completion. Journal of Machine Learning Research (to appear)

    Google Scholar 

  27. Singer, A.: Angular synchronization by eigenvectors and semidefinite programming. Applied and Computational Harmonic Analysis 30(1), 20–36 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Singer, A., Zhao, Z., Shkolnisky, Y., Hadani, R.: Viewing angle classification of cryo-electron microscopy images using eigenvectors. SIAM Journal on Imaging Sciences 4(2), 723–759 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Singer, A., Wu, H.-T.: Vector Diffusion Maps and the Connection Laplacian. Communications on Pure and Applied Mathematics (to appear)

    Google Scholar 

  30. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th ACM Symposium on Theory of Computing, pp. 81–90 (2004)

    Google Scholar 

  31. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems (2006), http://www.arxiv.org/abs/cs.NA/0607105

  32. Spielman, D.A., Teng, S.-H.: Spectral Sparsification of Graphs (2010), http://arxiv.org/abs/0808.4134

  33. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: Proceedings of 40th ACM Symposium on Theory of Computing, pp. 563–568 (2008)

    Google Scholar 

  34. Tropp, J.: User-Friendly Tail Bounds for Sums of Random Matrices, http://arxiv.org/abs/1004.4389

  35. Vu, V.: Spectral norm of random matrices. Combinatorica 27(6), 721–736 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications. Theory of Computing 4(1), 53–76 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chung, F., Zhao, W. (2012). Ranking and Sparsifying a Connection Graph. In: Bonato, A., Janssen, J. (eds) Algorithms and Models for the Web Graph. WAW 2012. Lecture Notes in Computer Science, vol 7323. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30541-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-30541-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-30540-5

  • Online ISBN: 978-3-642-30541-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics