Skip to main content

Reactive Oxygen Species and Atherosclerosis

  • Reference work entry
  • First Online:
Book cover Systems Biology of Free Radicals and Antioxidants
  • 375 Accesses

Abstract

Cardiovascular diseases (CVD) are related with reactive oxygen species (ROS) production and oxidative stress, including ischemia-reperfusion injury, sepsis, diabetes, and atherosclerosis. ROS originate from various sources, such as the uncoupling of nitric oxide synthase, lipoxygenase, xanthine oxidase, nicotinamide adenine dinucleotide phosphate oxidase, and particularly mitochondria. Nitric oxide synthesis impairment is a feature of endothelial dysfunction, is directly related with the development of atherosclerosis, and determines future vascular complications. In this sense, the role of oxidative stress is of great significance, although the pathways and molecular mechanisms underlying its action are not fully elucidated. This review considers the process of CVD in general and atherosclerosis in particular from a mitochondrial perspective. Although the relevance of antioxidants has been demonstrated by studies with cells and animals, their ineffectiveness in reducing cardiovascular death and morbidity in clinical trials has led many researchers to question the importance of oxidative stress in CVD. Accordingly, different approaches for the targeted delivery of antioxidants to mitochondria are being investigated. This review aims to provide a perspective of the following areas: the cellular metabolism of ROS and their role in CVD, currently available antioxidants and their prevention of oxidative stress-mediated diseases, and recent developments in mitochondria-targeted antioxidants as a weapon against mitochondrial oxidative damage and their future as a treatment for CVDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid MR, Schoots IG, Spokes KC, Wu SQ, Mawhinney C, Aird WC (2004) Vascular endothelial growth factor-mediated induction of manganese superoxide dismutase occurs through redox-dependent regulation of forkhead and IkappaB/NF-kappaB. J Biol Chem 279:44030–44038

    Article  CAS  PubMed  Google Scholar 

  • Adlam VJ, Harrison JC, Porteous CM, James AM, Smith RA, Murphy MP, Sammut IA (2005) Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury. FASEB J 19:1088–1095

    Article  CAS  PubMed  Google Scholar 

  • Aliev G, Seyidova D, Neal ML, Shi J, Lamb BT, Siedlak SL, Vinters HV, Head E, Perry G, Lamanna JC, Friedland RP, Cotman CW (2002) Atherosclerotic lesions and mitochondria DNA deletions in brain microvessels as a central target for the development of human AD and AD-like pathology in aged transgenic mice. Ann N Y Acad Sci 977:45–64

    Article  CAS  PubMed  Google Scholar 

  • Andreassi MG, Botto N (2003) DNA damage as a new emerging risk factor in atherosclerosis. Trends Cardiovasc Med 13:270–275

    Article  CAS  PubMed  Google Scholar 

  • Apostolova N, Cervera AM, Victor VM, Cadenas S, Sanjuan-Pla A, Alvarez-Barrientos A, Esplugues JV, McCreath KJ (2006) Loss of apoptosis-inducing factor leads to an increase in reactive oxygen species, and an impairment of respiration that can be reversed by antioxidants. Cell Death Differ 13:354–357

    Article  CAS  PubMed  Google Scholar 

  • Apostolova N, Garcia-Bou R, Hernandez-Mijares A, Herance R, Rocha M, Victor VM (2011) Mitochondrial antioxidants alleviate oxidative and nitrosative stress in a cellular model of sepsis. Pharm Res 28:2910–2919

    Article  CAS  PubMed  Google Scholar 

  • Asimakis GK, Lick S, Patterson C (2002) Postischemic recovery of contractile function is impaired in SOD2(+/−) but not SOD1(+/−) mouse hearts. Circulation 105:981–986

    Article  CAS  PubMed  Google Scholar 

  • Asin-Cayuela J, Manas AR, James AM, Smith RA, Murphy MP (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett 571:9–16

    Article  CAS  PubMed  Google Scholar 

  • Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R, Hunter GC, McIntyre K, Runge MS (2002) Mitochondrial integrity and function in atherogenesis. Circulation 106:544–549

    Article  CAS  PubMed  Google Scholar 

  • Barja G (2002) Rate of generation of oxidative stress-related damage and animal longevity. Free Radic Biol Med 33:1167–1172

    Article  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Binková B, Smerhovský Z, Strejc P, Boubelík O, Stávková Z, Chvátalová I, Srám RJ (2002) DNA-adducts and atherosclerosis: a study of accidental and sudden death males in the Czech Republic. Mutat Res 501:115–28

    Article  PubMed  Google Scholar 

  • Blanc J, Alves-Guerra MC, Esposito B, Rousset S, Gourdy P, Ricquier D, Tedgui A, Miroux B, Mallat Z (2003) Protective role of uncoupling protein 2 in atherosclerosis. Circulation 107:388–390

    Article  CAS  PubMed  Google Scholar 

  • Bottoni P, Giardina B, Pontoglio A, Scarà S, Scatena R (2012) Mitochondrial proteomic approaches for new potential diagnostic and prognostic biomarkers in cancer. Adv Exp Med Biol 942:423–440

    Article  CAS  PubMed  Google Scholar 

  • Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:817–833

    Article  Google Scholar 

  • Chang JC, Kou SJ, Lin WT, Liu CS (2010) Regulatory role of mitochondria in oxidative stress and atherosclerosis. World J Cardiol 2:150–159

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen JW, Jen SL, Lee WL, Hsu NW, Lin SJ, Ting CT, Chang MS, Wang PH (1998) Differential glucose tolerance in dipper and nondipper essential hypertension: the implications of circadian blood pressure regulation on glucose tolerance in hypertension. Diabetes Care 21:1743–1748

    Article  CAS  PubMed  Google Scholar 

  • Chrissobolis S, Miller AA, Drummond GR, Kemp-Harper BK, Sobey CG (2011) Oxidative stress and endothelial dysfunction in cerebrovascular disease. Front Biosci 16:1733–1745

    Article  CAS  Google Scholar 

  • Corral-Debrinski M, Stepien G, Shoffner JM, Lott MT, Kanter K, Wallace DC (1991) Hypoxemia is associated with mitochondrial DNA damage and gene induction. Implications for cardiac disease. JAMA 266:1812–1816

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Brookes PS, Darley-Usmar VM, Anderson PG (2001) Bioenergetics in cardiac hypertrophy: mitochondrial respiration as a pathological target of NO*. Am J Physiol Heart Circ Physiol 281:H2261–H2269

    CAS  PubMed  Google Scholar 

  • Demura M, Kamo N, Kobatake Y (1987) Mitochondrial membrane potential estimated with the correction of probe binding. Biochim Biophys Acta 894:355–364

    Article  CAS  PubMed  Google Scholar 

  • Devary Y, Rosette C, DiDonato JA, Karin M (1993) NF-kappa B activation by ultraviolet light not dependent on a nuclear signal. Science 261:1442–1445

    Article  CAS  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2005) Mitochondrial function and myocardial aging. A critical analysis of the role of permeability transition. Cardiovasc Res 66:222–232

    Article  CAS  PubMed  Google Scholar 

  • Di Taranto MD, Morgante A, Bracale UM, D’Armiento FP, Porcellini M, Bracale G, Fortunato G, Salvatore F (2012) Altered expression of inflammation-related genes in human carotid atherosclerotic plaques. Atherosclerosis 220:93–101

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S, Schon EA (2003) Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668

    Article  CAS  PubMed  Google Scholar 

  • Esplugues JV, Rocha M, Nuñez C, Bosca I, Ibiza S, Herance JR, Ortega A, Serrador JM, D’Ocon P, Victor VM (2006) Complex I dysfunction and tolerance to nitroglycerin: an approach based on mitochondrial-targeted antioxidants. Circ Res 99:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Filipovska A, Kelso GF, Brown SE, Beer SM, Smith RA, Murphy MP (2005) Synthesis and characterization of a triphenylphosphonium-conjugated peroxidase mimetic. Insights into the interaction of ebselen with mitochondria. J Biol Chem 280:24113–24126

    Article  CAS  PubMed  Google Scholar 

  • Frei B, Kim MC, Ames BN (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc Natl Acad Sci USA 87:4879–4883

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112

    Article  CAS  PubMed  Google Scholar 

  • Galley HF (2010) Bench-to-bedside review: targeting antioxidants to mitochondria in sepsis. Crit Care 14:230

    PubMed Central  PubMed  Google Scholar 

  • Garcia-Bou R, Rocha M, Apostolova N, Herance R, Hernandez-Mijares A, Victor VM (2012) Evidence for a relationship between mitochondrial complex I activity and mitochondrial aldehyde dehydrogenase during nitroglycerin tolerance: effects of mitochondrial antioxidants. Biochim Biophys Acta 1817:828–837

    Article  CAS  PubMed  Google Scholar 

  • Greaves LC, Reeve AK, Taylor RW, Turnbull DM (2012) Mitochondrial DNA and disease. J Pathol 226:274–286

    Article  CAS  PubMed  Google Scholar 

  • Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8:267–271

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez J, Ballinger SW, Darley-Usmar VM, Landar A (2006) Free radicals, mitochondria, and oxidized lipids: the emerging role in signal transduction in vascular cells. Circ Res 99:924–932

    Article  CAS  PubMed  Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  PubMed  Google Scholar 

  • Gutteridge JM, Mitchell J (1999) Redox imbalance in the critically ill. Br Med Bull 55:49–75

    Article  CAS  PubMed  Google Scholar 

  • Hagen T, Taylor CT, Lam F, Moncada S (2003) Redistribution of intracellular oxygen in hypoxia by nitric oxide: effect on HIF1alpha. Science 302:1975–1978

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B (1997) Antioxidants: the basics – what they are and how to evaluate them. Adv Pharmacol 38:3–20

    Article  CAS  PubMed  Google Scholar 

  • Hernandez-Mijares A, Rocha M, Apostolova N, Borras C, Jover A, Bañuls C, Sola E, Victor VM (2011) Mitochondrial complex I impairment in leukocytes from type 2 diabetic patients. Free Radic Biol Med 50:1215–1221

    Article  CAS  PubMed  Google Scholar 

  • Houstek J, Pícková A, Vojtísková A, Mrácek T, Pecina P, Jesina P (2006) Mitochondrial diseases and genetic defects of ATP synthase. Biochim Biophys Acta 1757:1400–1405

    Article  CAS  PubMed  Google Scholar 

  • Hughes G, Murphy MP, Ledgerwood EC (2005) Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants. Biochem J 389:83–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • James AM, Cochemé HM, Murphy MP (2005) Mitochondria-targeted redox probes as tools in the study of oxidative damage and ageing. Mech Ageing Dev 126:982–986

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Serbinova EA, Stoyanovsky DA, Khwaja S, Packer L (1994) Assay of ubiquinones and ubiquinols as antioxidants. Methods Enzymol 234:343–354

    Article  CAS  PubMed  Google Scholar 

  • Kalivendi SV, Konorev EA, Cunningham S, Vanamala SK, Kaji EH, Joseph J, Kalyanaraman B (2005) Doxorubicin activates nuclear factor of activated T-lymphocytes and Fas ligand transcription: role of mitochondrial reactive oxygen species and calcium. Biochem J 389:527–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karamanlidis G, Bautista-Hernandez V, Fynn-Thompson F, Del Nido P, Tian R (2011) Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail 4:707–713

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Coulter CV, Hughes G, Porteous WK, Ledgerwood EC, Smith RA, Murphy MP (2001) Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 276:4588–4596

    Article  CAS  PubMed  Google Scholar 

  • Kelso GF, Porteous CM, Hughes G, Ledgerwood EC, Gane AM, Smith RA, Murphy MP (2002) Prevention of mitochondrial oxidative damage using targeted antioxidants. Ann N Y Acad Sci 959:263–274

    Article  CAS  PubMed  Google Scholar 

  • Knight-Lozano CA, Young CG, Burow DL, Hu ZY, Uyeminami D, Pinkerton KE, Ischiropoulos H, Ballinger SW (2002) Cigarette smoke exposure and hypercholesterolemia increase mitochondrial damage in cardiovascular tissues. Circulation 105:849–854

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  CAS  PubMed  Google Scholar 

  • Lebovitz RM, Zhang H, Vogel H, Cartwright J Jr, Dionne L, Lu N, Huang S, Matzuk MM (1996) Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice. Proc Natl Acad Sci USA 93:9782–9787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38

    Article  CAS  PubMed  Google Scholar 

  • Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci USA 95:8892–8897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercer JR, Cheng KK, Figg N, Gorenne I, Mahmoudi M, Griffin J, Vidal-Puig A, Logan A, Murphy MP, Bennett M (2010) DNA damage links mitochondrial dysfunction to atherosclerosis and the metabolic syndrome. Circ Res 107:1021–1031

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mercer JR, Gray K, Figg N, Kumar S, Bennett MR (2012) The methyl xanthine caffeine inhibits DNA damage signaling and reactive species and reduces atherosclerosis in ApoE−/− Mice. Arterioscler Thromb Vasc Biol 32:2461–2467

    Article  CAS  PubMed  Google Scholar 

  • Meydani M (2004) Vitamin E modulation of cardiovascular disease. Ann N Y Acad Sci 1031:271–279

    Article  CAS  PubMed  Google Scholar 

  • Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142:37–46

    Article  CAS  PubMed  Google Scholar 

  • Muratovska A, Lightowlers RN, Taylor RW, Wilce JA, Murphy MP (2001) Targeting large molecules to mitochondria. Adv Drug Deliv Rev 49:189–198

    Article  CAS  PubMed  Google Scholar 

  • Muro S, Muzykantov VR (2005) Targeting of antioxidant and anti-thrombotic drugs to endothelial cell adhesion molecules. Curr Pharm Des 11:2383–2401

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2008) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. In: Dykens JA, Will Y (eds) Drug-induced mitochondrial dysfunction. Wiley, Hoboken

    Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Lipton SA (2011) Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ 18:1478–1486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nohl H, Kozlov AV, Gille L, Staniek K (2005) Endogenous oxidant-generating systems. In: Grune T (ed) Oxidants and antioxidants defense systems, vol 2, The handbook of environmental chemistry. Springer, Berlin, pp 1–18

    Google Scholar 

  • Núñez C, Víctor VM, Tur R, Alvarez-Barrientos A, Moncada S, Esplugues JV, D’Ocón P (2005) Discrepancies between nitroglycerin and NO-releasing drugs on mitochondrial oxygen consumption, vasoactivity, and the release of NO. Circ Res 97:1063–1069

    Article  PubMed  Google Scholar 

  • Powers SK, Talbert EE, Adhihetty PJ (2011) Reactive oxygen and nitrogen species as intracellular signals in skeletal muscle. J Physiol 589:2129–2138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramachandran A, Moellering DR, Ceaser E, Shiva S, Xu J, Darley-Usmar V (2002) Inhibition of mitochondrial protein synthesis results in increased endothelial cell susceptibility to nitric oxide-induced apoptosis. Proc Natl Acad Sci USA 99:6643–6648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reaume AG, Elliott JL, Hoffman EK, Kowall NW, Ferrante RJ, Siwek DF, Wilcox HM, Flood DG, Beal MF, Brown RH Jr, Scott RW, Snider WD (1996) Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat Genet 13:43–47

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Apostolova N, Hernandez-Mijares A, Herance R, Victor VM (2010) Oxidative stress and endothelial dysfunction in cardiovascular disease: mitochondria-targeted therapeutics. Curr Med Chem 17:3827–3841

    Article  CAS  PubMed  Google Scholar 

  • Ruano-Ravina A, Figueiras A, Freire-Garabal M, Barros-Dios JM (2006) Antioxidant vitamins and risk of lung cancer. Curr Pharm Des 12:599–613

    Article  CAS  PubMed  Google Scholar 

  • Sanjuán-Pla A, Cervera AM, Apostolova N, Garcia-Bou R, Víctor VM, Murphy MP, McCreath KJ (2005) A targeted antioxidant reveals the importance of mitochondrial reactive oxygen species in the hypoxic signaling of HIF-1alpha. FEBS Lett 579:2669–2674

    Article  PubMed  Google Scholar 

  • Saretzki G, Murphy MP, von Zglinicki T (2003) MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell 2:141–143

    Article  CAS  PubMed  Google Scholar 

  • Schächinger V, Britten MB, Zeiher AM (2000) Prognostic impact of coronary vasodilator dysfunction on adverse long-term outcome of coronary heart disease. Circulation 101:1899–1906

    Article  PubMed  Google Scholar 

  • Schäfer M, Schäfer C, Ewald N, Piper HM, Noll T (2003) Role of redox signaling in the autonomous proliferative response of endothelial cells to hypoxia. Circ Res 92:1010–1015

    Article  PubMed  Google Scholar 

  • Schulze-Osthoff K, Beyaert R, Vandevoorde V, Haegeman G, Fiers W (1993) Depletion of the mitochondrial electron transport abrogates the cytotoxic and gene-inductive effects of TNF. EMBO J 12:3095–3104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheu SS, Nauduri D, Anders MW (2006) Targeting antioxidants to mitochondria: a new therapeutic direction. Biochim Biophys Acta 1762:256–265

    Article  CAS  PubMed  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Murphy MP (2011) Mitochondria-targeted antioxidants as therapies. Discov Med 11:106–114

    PubMed  Google Scholar 

  • Smith RA, Porteous CM, Coulter CV, Murphy MP (1999) Selective targeting of an antioxidant to mitochondria. Eur J Biochem 263:709–716

    Article  CAS  PubMed  Google Scholar 

  • Smith RA, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci USA 100:5407–5412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stavrovskaya IG, Kristal BS (2005) The powerhouse takes control of the cell: is the mitochondrial permeability transition a viable therapeutic target against neuronal dysfunction and death? Free Radic Biol Med 38:687–697

    Article  CAS  PubMed  Google Scholar 

  • Teshima Y, Akao M, Jones SP, Marbán E (2003) Uncoupling protein-2 overexpression inhibits mitochondrial death pathway in cardiomyocytes. Circ Res 93:192–200

    Article  CAS  PubMed  Google Scholar 

  • Thom TJ (1989) International mortality from heart disease: rates and trends. Int J Epidemiol 18:20–28

    Article  Google Scholar 

  • Tonkin A (2003) Atherosclerosis and heart diseases. Martin Dunitz, London, pp 1–235

    Book  Google Scholar 

  • Victor VM, Rocha M, De la Fuente M (2003a) N-acetylcysteine protects mice from lethal endotoxemia by regulating the redox state of immune cells. Free Radic Res 37:919–929

    Article  CAS  PubMed  Google Scholar 

  • Víctor VM, Rocha M, De la Fuente M (2003b) Regulation of macrophage function by the antioxidant N-acetylcysteine in mouse-oxidative stress by endotoxin. Int Immunopharmacol 3:97–106

    Article  PubMed  Google Scholar 

  • Victor VM, Rocha M, De la Fuente M (2004) Immune cells: free radicals and antioxidants in sepsis. Int Immunopharmacol 4:327–347

    Article  CAS  PubMed  Google Scholar 

  • Victor VM, Rocha M, Esplugues JV, De la Fuente M (2005) Role of free radicals in sepsis: antioxidant therapy. Curr Pharm Des 11:3141–3158

    Article  CAS  PubMed  Google Scholar 

  • Victor VM, Nuñez C, D’Ocón P, Taylor CT, Esplugues JV, Moncada S (2009) Regulation of oxygen distribution in tissues by endothelial nitric oxide. Circ Res 104:1178–1183

    Article  CAS  PubMed  Google Scholar 

  • Victor VM, Rocha M, Bañuls C, Bellod L, Hernandez-Mijares A (2011a) Mitochondrial dysfunction and targeted drugs: a focus on diabetes. Curr Pharm Des 17:1986–2001

    Article  CAS  PubMed  Google Scholar 

  • Victor VM, Rocha M, Herance R, Hernandez-Mijares A (2011b) Oxidative stress and mitochondrial dysfunction in type 2 diabetes. Curr Pharm Des 17:3947–3958

    Article  CAS  PubMed  Google Scholar 

  • Vora DK, Fang ZT, Liva SM, Tyner TR, Parhami F, Watson AD, Drake TA, Territo MC, Berliner JA (1997) Induction of P-selectin by oxidized lipoproteins. Separate effects on synthesis and surface expression. Circ Res 80:810–818

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Boddapati SV, D’Souza GG, Cheng SM (2004) Targeting of low- molecular weight drugs to mammalian mitochondria. Drug Des Rev 1:15–28

    CAS  Google Scholar 

  • Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci USA 95:12896–12901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yao PM, Tabas I (2001) Free cholesterol loading of macrophages is associated with widespread mitochondrial dysfunction and activation of the mitochondrial apoptosis pathway. J Biol Chem 276:42468–42476

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J (2012) Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 59:680–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Victor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Victor, V.M. (2014). Reactive Oxygen Species and Atherosclerosis. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_53

Download citation

Publish with us

Policies and ethics