Skip to main content

Dietary Fatty Acids, Redox Signaling, and the Heart

  • Reference work entry
  • First Online:

Abstract

In Western societies, cardiac disease (CD) remains the primary reason for unexpected morbidity and mortality. A frequent accomplice that participates in many cardiac disorders is the omnipresence of aberrant oxidative stress in such disease processes. As more research suggests nutritional factors have an important influence on this mechanism, there is an increasing realization that dietary fats modulate cardiac redox signaling. Fatty acids are the most energy dense macronutrients and therefore their signaling roles on cardiac cell types, during normal or disease physiology, may be crucial in strategizing therapeutic dietary interventions to attenuate cardiac oxidative damage. This chapter provides a summary of various dietary fatty acid classes, their impact on cardiac metabolism, and their role in either augmenting or attenuating cardiac oxidative stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   2,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbey M, Belling GB, Noakes M, Hirata F, Nestel PJ (1993) Oxidation of low-density lipoproteins: intraindividual variability and the effect of dietary linoleate supplementation. Am J Clin Nutr 57(3):391–398

    CAS  PubMed  Google Scholar 

  • Ahs M, Prasad A, Aminov Z, Carpenter DO (2011) Mechanisms of cell death of thymocytes induced by polyunsaturated, monounsaturated and trans-fatty acids. J Cell Biochem 112(12):3863–3871

    CAS  PubMed  Google Scholar 

  • An WS, Son YK, Kim SE, Kim KH, Bae HR, Lee S, Park Y, Kim HJ, Vaziri ND (2011) Association of adiponectin and leptin with serum lipids and erythrocyte omega-3 and omega-6 fatty acids in dialysis patients. Clin Nephrol 75(3):195–203

    CAS  PubMed  Google Scholar 

  • Arnold C, Konkel A, Fischer R, Schunck WH (2010) Cytochrome p450-dependent metabolism of omega-6 and omega-3 long-chain polyunsaturated fatty acids. Pharmacol Rep 62(3):536–547

    CAS  PubMed  Google Scholar 

  • Ascherio A, Rimm EB, Giovannucci EL, Spiegelman D, Meir S, Willett WC (1996) Dietary fat and risk of coronary heart disease in men: cohort follow up study in the united states. BMJ 313(7049):84

    CAS  PubMed Central  PubMed  Google Scholar 

  • Avery SV (2011) Molecular targets of oxidative stress. Biochem J 434(2):201–210

    CAS  PubMed  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil nadph oxidase. Arch Biochem Biophys 397(2):342–344

    CAS  PubMed  Google Scholar 

  • Balakumar P, Taneja G (2012) Fish oil and vascular endothelial protection: bench to bedside. Free Radic Biol Med 53(2):271–279

    CAS  PubMed  Google Scholar 

  • Balkova P, Jezkova J, Hlavackova M, Neckar J, Stankova B, Kolar F, Novak F, Novakova O (2009) Dietary polyunsaturated fatty acids and adaptation to chronic hypoxia alter acyl composition of serum and heart lipids. Br J Nutr 102(9):1297–1307

    CAS  PubMed  Google Scholar 

  • Bannenberg G, Serhan CN (2010) Specialized pro-resolving lipid mediators in the inflammatory response: an update. BBA Mol Cell Biol L 1801(12):1260–1273

    CAS  Google Scholar 

  • Belluzzi A, Brignola C, Campieri M, Pera A, Boschi S, Miglioli M (1996) Effect of an enteric-coated fish-oil preparation on relapses in Crohn’s disease. N Engl J Med 334(24):1557–1560

    CAS  PubMed  Google Scholar 

  • Benson MK, Devi K (2009) Influence of omega-6/omega-3 rich dietary oils on lipid profile and antioxidant enzymes in normal and stressed rats. Indian J Exp Biol 47(2):98–103

    CAS  PubMed  Google Scholar 

  • Bers DM (2008) Calcium cycling and signaling in cardiac myocytes. Annu Rev Physiol 70:23–49

    CAS  PubMed  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 Suppl 1):3–8

    CAS  PubMed  Google Scholar 

  • Blankenberg S, Rupprecht HJ, Bickel C, Torzewski M, Hafner G, Tiret L, Smieja M, Cambien F, Meyer J, Lackner KJ (2003) Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 349(17):1605–1613

    CAS  PubMed  Google Scholar 

  • Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin MA, Morio B, Vidal H, Rieusset J (2008) Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 118(2):789–800

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED (2005) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetics in obesity. Circulation 112(17):2686–2695

    PubMed  Google Scholar 

  • Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX, Aziz S, Johnson JI, Bugger H, Zaha VG, Abel ED (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56(10):2457–2466

    CAS  PubMed  Google Scholar 

  • Bray MA, Cunningham FM, Ford-Hutchinson AW, Smith MJ (1981) Leukotriene b4: a mediator of vascular permeability. Br J Pharmacol 72(3):483–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bugger H, Abel ED (2008) Molecular mechanisms for myocardial mitochondrial dysfunction in the metabolic syndrome. Clin Sci (Lond) 114(3):195–210

    CAS  Google Scholar 

  • Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    CAS  PubMed  Google Scholar 

  • Calder PC (2006) N–3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6):S1505–S1519

    Google Scholar 

  • Calder PC (2010) The american heart association advisory on n-6 fatty acids: evidence based or biased evidence? Br J Nutr 104(11):1575–1576

    CAS  PubMed  Google Scholar 

  • Canete R, Gil-Campos M, Aguilera CM, Gil A (2007) Development of insulin resistance and its relation to diet in the obese child. Eur J Nutr 46(4):181–187

    CAS  PubMed  Google Scholar 

  • Capdevila J, Chacos N, Werringloer J, Prough RA, Estabrook RW (1981) Liver microsomal cytochrome p-450 and the oxidative metabolism of arachidonic acid. Proc Natl Acad Sci USA 78(9):5362–5366

    CAS  PubMed Central  PubMed  Google Scholar 

  • Catala A (2010) A synopsis of the process of lipid peroxidation since the discovery of the essential fatty acids. Biochem Biophys Res Commun 399(3):318–323

    CAS  PubMed  Google Scholar 

  • Chandrasekar B, Fernandes G (1994) Decreased proinflammatory cytokines and increased antioxidant enzyme gene expression by ω-3 lipids in murine lupus nephritis. Biochem Biophys Res Commun 200(2):893–898

    CAS  PubMed  Google Scholar 

  • Chen J, Capdevila JH, Zeldin DC, Rosenberg RL (1999) Inhibition of cardiac l-type calcium channels by epoxyeicosatrienoic acids. Mol Pharmacol 55(2):288–295

    CAS  PubMed  Google Scholar 

  • Chen J, Shearer GC, Chen Q, Healy CL, Beyer AJ, Nareddy VB, Gerdes AM, Harris WS, O’Connell TD, Wang D (2011) Omega-3 fatty acids prevent pressure overload–induced cardiac fibrosis through activation of cyclic gmp/protein kinase g signaling in cardiac fibroblasts/clinical perspective. Circulation 123(6):584–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng J, Ou J-S, Singh H, Falck JR, Narsimhaswamy D, Pritchard KA, Schwartzman ML (2008) 20-hydroxyeicosatetraenoic acid causes endothelial dysfunction via enos uncoupling. Am J Physiol Heart Circ Physiol 294(2):H1018–H1026

    CAS  PubMed  Google Scholar 

  • Cnop M (2008) Fatty acids and glucolipotoxicity in the pathogenesis of type2 diabetes. Biochem Soc Trans 36(3):348–352

    CAS  PubMed  Google Scholar 

  • Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG (2001) Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50(8):1771–1777

    CAS  PubMed  Google Scholar 

  • Coll T, Eyre E, Rodríguez-Calvo R, Palomer X, Sánchez RM, Merlos M, Laguna JC, Vázquez-Carrera M (2008) Oleate reverses palmitate-induced insulin resistance and inflammation in skeletal muscle cells. J Biol Chem 283(17):11107–11116

    CAS  PubMed  Google Scholar 

  • Connor WE (2000) Importance of n-3 fatty acids in health and disease1. Am J Clin Nutr 71(1):171S–175S

    CAS  PubMed  Google Scholar 

  • Crompton M (1990) The role of calcium in the function and dysfunction of heart mitochondria. In: Langer GA (ed) Calcium and the heart. Raven, New York, pp 167–198

    Google Scholar 

  • Czernichow S, Thomas D, Bruckert E (2010) N-6 fatty acids and cardiovascular health: a review of the evidence for dietary intake recommendations. Br J Nutr 104(6):788–796

    CAS  PubMed  Google Scholar 

  • Dahlgren C, Karlsson A (1999) Respiratory burst in human neutrophils. J Immunol Methods 232(1–2):3–14

    CAS  PubMed  Google Scholar 

  • de Haan JB, Bladier C, Griffiths P, Kelner M, O’Shea RD, Cheung NS, Bronson RT, Silvestro MJ, Wild S, Zheng SS, Beart PM, Hertzog PJ, Kola I (1998) Mice with a homozygous null mutation for the most abundant glutathione peroxidase, gpx1, show increased susceptibility to the oxidative stress-inducing agents paraquat and hydrogen peroxide. J Biol Chem 273(35):22528–22536

    PubMed  Google Scholar 

  • Deisseroth A, Dounce AL (1970) Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 50(3):319–375

    CAS  PubMed  Google Scholar 

  • DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72(4):905–911

    CAS  PubMed  Google Scholar 

  • Dhanasekaran A, Gruenloh SK, Buonaccorsi JN, Zhang R, Gross GJ, Falck JR, Patel PK, Jacobs ER, Medhora M (2008) Multiple antiapoptotic targets of the pi3k/akt survival pathway are activated by epoxyeicosatrienoic acids to protect cardiomyocytes from hypoxia/anoxia. Am J Physiol Heart Circ Physiol 294(2):H724–H735

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diniz YS, Cicogna AC, Padovani CR, Santana LS, Faine LA, Novelli EL (2004) Diets rich in saturated and polyunsaturated fatty acids: metabolic shifting and cardiac health. Nutrition 20(2):230–234

    CAS  PubMed  Google Scholar 

  • Dong F, Zhang X, Yang X, Esberg LB, Yang H, Zhang Z, Culver B, Ren J (2006) Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J Endocrinol 188(1):25–36

    CAS  PubMed  Google Scholar 

  • Duvall E, Wyllie AH (1986) Death and the cell. Immunol Today 7(4):115–119

    CAS  Google Scholar 

  • Egan BM, Greene EL, Goodfriend TL (2001) Nonesterified fatty acids in blood pressure control and cardiovascular complications. Curr Hypertens Rep 3(2):107–116

    CAS  PubMed  Google Scholar 

  • Enzan K, Kurosawa S, Yoshioka N, Inaba H (1996) Thromboxane rather than platelet activating factor mediates pulmonary vasoconstriction after antigen challenge in rabbits. Shock 6(3):183–187

    CAS  PubMed  Google Scholar 

  • Felton CV, Crook D, Davies MJ, Oliver MF (1994) Dietary polyunsaturated fatty acids and composition of human aortic plaques. Lancet 344(8931):1195–1196

    CAS  PubMed  Google Scholar 

  • Fer M, Dréano Y, Lucas D, Corcos L, Salaün J-P, Berthou F, Amet Y (2008) Metabolism of eicosapentaenoic and docosahexaenoic acids by recombinant human cytochromes p450. Arch Biochem Biophys 471(2):116–125

    CAS  PubMed  Google Scholar 

  • Fernandez-Banares F, Esteve M, Navarro E, Cabre E, Boix J, Abad-Lacruz A, Klaassen J, Planas R, Humbert P, Pastor C, Gassull MA (1996) Changes of the mucosal n3 and n6 fatty acid status occur early in the colorectal adenoma-carcinoma sequence. Gut 38(2):254–259

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, Fleming I, Busse R (1999) Cytochrome p450 2c is an edhf synthase in coronary arteries. Nature 401(6752):493–497

    CAS  PubMed  Google Scholar 

  • Forgione MA, Cap A, Liao R, Moldovan NI, Eberhardt RT, Lim CC, Jones J, Goldschmidt-Clermont PJ, Loscalzo J (2002) Heterozygous cellular glutathione peroxidase deficiency in the mouse: abnormalities in vascular and cardiac function and structure. Circulation 106(9):1154–1158

    CAS  PubMed  Google Scholar 

  • Franco AA, Odom RS, Rando TA (1999) Regulation of antioxidant enzyme gene expression in response to oxidative stress and during differentiation of mouse skeletal muscle. Free Radic Biol Med 27(9–10):1122–1132

    CAS  PubMed  Google Scholar 

  • Fukai T, Folz RJ, Landmesser U, Harrison DG (2002) Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 55(2):239–249

    CAS  PubMed  Google Scholar 

  • Gao D, Pararasa C, Dunston CR, Bailey CJ, Griffiths HR (2012) Palmitate promotes monocyte atherogenicity via de novo ceramide synthesis. Free Radic Biol Med 53(4):796–806

    Google Scholar 

  • García-Ruiz C, Colell A, Marí M, Morales A, Fernández-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species: role of mitochondrial glutathione. J Biol Chem 272(17):11369–11377

    PubMed  Google Scholar 

  • Gary R, Davis L (2008) Diastolic heart failure. Heart Lung J Acute Crit Care 37(6):405–416

    Google Scholar 

  • Gebauer SK, Psota TL, Harris WS, Kris-Etherton PM (2006) N-3 fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular benefits. Am J Clin Nutr 83(6 Suppl):1526S–1535S

    CAS  PubMed  Google Scholar 

  • Ghosh S, Rodrigues B (2006) Cardiac cell death in early diabetes and its modulation by dietary fatty acids. Biochim Biophys Acta 1761(10):1148–1162

    CAS  PubMed  Google Scholar 

  • Ghosh S, An D, Pulinilkunnil T, Qi D, Lau HCS, Abrahani A, Innis SM, Rodrigues B (2004a) Role of dietary fatty acids and acute hyperglycemia in modulating cardiac cell death. Nutrition 20(10):916–923

    CAS  PubMed  Google Scholar 

  • Ghosh S, Qi D, An D, Pulinilkunnil T, Abrahani A, Kuo K-H, Wambolt RB, Allard M, Innis SM, Rodrigues B (2004b) Brief episode of stz-induced hyperglycemia produces cardiac abnormalities in rats fed a diet rich in n-6 pufa. Am J Physiol Heart Circ Physiol 287(6):2518–2527

    Google Scholar 

  • Ghosh S, Kewalramani G, Yuen G, Pulinilkunnil T, An D, Innis SM, Allard MF, Wambolt RB, Qi D, Abrahani A, Rodrigues B (2006) Induction of mitochondrial nitrative damage and cardiac dysfunction by chronic provision of dietary omega-6 polyunsaturated fatty acids. Free Radic Biol Med 41(9):1413–1424

    CAS  PubMed  Google Scholar 

  • Ghosh S, Novak EM, Innis SM (2007) Cardiac proinflammatory pathways are altered with different dietary n-6 linoleic to n-3 α-linolenic acid ratios in normal, fat-fed pigs. Am J Physiol Heart Circ Physiol 293(5):2919–2927

    Google Scholar 

  • Gordon DJ (1995) Lowering cholesterol and total mortality. In: Rifkin BM (ed) Lowering cholesterol in high-risk individuals and populations. Marcel Dekker, New York, pp 33–48

    Google Scholar 

  • Griffith OW, Meister A (1985) Origin and turnover of mitochondrial glutathione. Proc Natl Acad Sci USA 82(14):4668–4672

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gurtner GC, Werner S, Barrandon Y, Longaker MT (2008) Wound repair and regeneration. Nature 453(7193):314–321

    CAS  PubMed  Google Scholar 

  • Hammer CT, Wills ED (1978) The role of lipid components of the diet in the regulation of the fatty acid composition of the rat liver endoplasmic reticulum and lipid peroxidation. Biochem J 174(2):585–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerentol 11(3):298–300

    CAS  Google Scholar 

  • Harris W (2010) Omega-6 and omega-3 fatty acids: partners in prevention. Curr Opin Clin Nutr 13(2):125–129

    CAS  Google Scholar 

  • Hashimoto M, Hossain M, Yamasaki H, Yazawa K, Masumura S (1999) Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 34(12):1297–1304

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Hossain S, Shido O (2006) Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol Cell Biochem 293(1):1–8

    CAS  PubMed  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    CAS  PubMed  Google Scholar 

  • Hegsted DM, McGandy R, Myers M, Stare F (1965) Quantitative effects of dietary fat on serum cholesterol in man. Am J Clin Nutr 17(5):281–295

    CAS  PubMed  Google Scholar 

  • Hegsted DM, Ausman LM, Johnson JA, Dallal GE (1993) Dietary fat and serum lipids: an evaluation of the experimental data. Am J Clin Nutr 57(6):875–883

    CAS  PubMed  Google Scholar 

  • Hennig B, Toborek M, McClain CJ (2001) High-energy diets, fatty acids and endothelial cell function: implications for atherosclerosis. J Am Coll Nutr 20(2):97–105

    CAS  PubMed  Google Scholar 

  • Hertog MG, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S et al (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155(4):381–386

    CAS  PubMed  Google Scholar 

  • Hoff U, Lukitsch I, Chaykovska L, Ladwig M, Arnold C, Manthati VL, Fuller TF, Schneider W, Gollasch M, Muller DN, Flemming B, Seeliger E, Luft FC, Falck JR, Dragun D, Schunck W-H (2011) Inhibition of 20-hete synthesis and action protects the kidney from ischemia/reperfusion injury. Kidney Int 79(1):57–65

    CAS  PubMed  Google Scholar 

  • Hu FB, Stampfer MJ, Manson JAE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337(21):1491–1499

    CAS  PubMed  Google Scholar 

  • Huang W, Glass CK (2010) Nuclear receptors and inflammation control: molecular mechanisms and pathophysiological relevance. Arterioscler Thromb Vasc Biol 30(8):1542–1549

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang H-Y, Appel LI, Croft KD, Miller ER, Mori TA, Puddey IB (2002) Effects of vitamin c and vitamin e on in vivo lipid peroxidation: results of a randomized controlled trial. Am J Clin Nutr 76(3):549–555

    CAS  PubMed  Google Scholar 

  • Icardo JM (1988) Heart anatomy and developmental biology. Experientia 44(11–12):910–919

    CAS  PubMed  Google Scholar 

  • Innis SM, Jacobson K (2007) Dietary lipids in early development and intestinal inflammatory disease. Nutr Rev 65(12 Pt 2):S188–S193

    PubMed  Google Scholar 

  • Ishiyama J, Taguchi R, Yamamoto A, Murakami K (2010) Palmitic acid enhances lectin-like oxidized ldl receptor (lox-1) expression and promotes uptake of oxidized ldl in macrophage cells. Atherosclerosis 209(1):118–124

    CAS  PubMed  Google Scholar 

  • Ishizuka T, Cheng J, Singh H, Vitto MD, Manthati VL, Falck JR, Laniado-Schwartzman M (2008) 20-hydroxyeicosatetraenoic acid stimulates nuclear factor-kb activation and the production of inflammatory cytokines in human endothelial cells. J Pharmacol Exp Ther 324(1):103–110

    CAS  PubMed  Google Scholar 

  • Jakobsen MU, O’Reilly EJ, Heitmann BL, Pereira MA, Balter K, Fraser GE, Goldbourt U, Hallmans G, Knekt P, Liu S, Pietinen P, Spiegelman D, Stevens J, Virtamo J, Willett WC, Ascherio A (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89(5):1425–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  • James MJ, Gibson RA, Cleland LG (2000) Dietary polyunsaturated fatty acids and inflammatory mediator production1. Am J Clin Nutr 71(1):343S–348S

    CAS  PubMed  Google Scholar 

  • Jones DP, Thor H, Andersson B, Orrenius S (1978) Detoxification reactions in isolated hepatocytes. Role of glutathione peroxidase, catalase, and formaldehyde dehydrogenase in reactions relating to n-demethylation by the cytochrome p-450 system. J Biol Chem 253(17):6031–6037

    CAS  PubMed  Google Scholar 

  • Jones PJ, Pencharz PB, Clandinin MT (1985) Whole body oxidation of dietary fatty acids: implications for energy utilization. Am J Clin Nutr 42(5):769–777

    CAS  PubMed  Google Scholar 

  • Jude S, Bedut S, Roger S, Pinault M, Champeroux P, White E, Le Guennec JY (2003) Peroxidation of docosahexaenoic acid is responsible for its effects on i to and i ss in rat ventricular myocytes. Br J Pharmacol 139(4):816–822

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jung TW, Lee YJ, Lee MW, Kim SM (2009) Full-length adiponectin protects hepatocytes from palmitate-induced apoptosis via inhibition of c-jun nh2 terminal kinase. FEBS J 276(8):2278–2284

    CAS  PubMed  Google Scholar 

  • Kabuto H, Amakawa M, Mankura M, Yamanushi TT, Mori A (2009) Docosahexaenoic acid ethyl ester enhances 6-hydroxydopamine-induced neuronal damage by induction of lipid peroxidation in mouse striatum. Neurochem Res 34(7):1299–1303

    CAS  PubMed  Google Scholar 

  • Kanekar S, Hirozanne T, Terracio L, Borg TK (1998) Cardiac fibroblasts: form and function. Cardiovasc Pathol 7(3):127–133

    Google Scholar 

  • Kang YJ, Chen Y, Epstein PN (1996) Suppression of doxorubicin cardiotoxicity by overexpression of catalase in the heart of transgenic mice. J Biol Chem 271(21):12610–12616

    CAS  PubMed  Google Scholar 

  • Kong JY, Rabkin SW (2000) Palmitate-induced apoptosis in cardiomyocytes is mediated through alterations in mitochondria: prevention by cyclosporin a. Biochim Biophys Acta 1485(1):45–55

    CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Taylor DS, Yu-Poth S, Huth P, Moriarty K, Fishell V, Hargrove RL, Zhao G, Etherton TD (2000) Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr 71(1 Suppl):179S–188S

    CAS  PubMed  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ (2002) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Circulation 106(21):2747–2757

    PubMed  Google Scholar 

  • Kris-Etherton PM, Harris WS, Appel LJ, for the Nutrition C (2003) Fish consumption, fish oil, omega-3 fatty acids, and cardiovascular disease. Arterioscler Thromb Vasc Biol 23(2): e20–30

    CAS  PubMed  Google Scholar 

  • Kubota T, Miyagishima M, Frye CS, Alber SM, Bounoutas GS, Kadokami T, Watkins SC, McTiernan CF, Feldman AM (2001) Overexpression of tumor necrosis factor- α activates both anti- and pro-apoptotic pathways in the myocardium. J Mol Cell Cardiol 33(7):1331–1344

    CAS  PubMed  Google Scholar 

  • Kumar D, Jugdutt BI (2003) Apoptosis and oxidants in the heart. J Lab Clin Med 142(5):288–297

    CAS  PubMed  Google Scholar 

  • Laher I, Beam J, Botta A, Barendregt R, Sulistyoningrum D, Devlin A, Rheault M, Ghosh S (2013) Short-term exercise worsens cardiac oxidative stress and fibrosis in 8-month-old db/db mice by depleting cardiac glutathione. Free Radic Res 47(1):44–54

    CAS  PubMed  Google Scholar 

  • Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F (1998) Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 97(19):1930–1934

    CAS  PubMed  Google Scholar 

  • Laskowski KR, Russell RR 3rd (2008) Uncoupling proteins in heart failure. Curr Heart Fail Rep 5(2):75–79

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leaf A, Xiao YF (2001) The modulation of ionic currents in excitable tissues by n-3 polyunsaturated fatty acids. J Membr Biol 184(3):263–271

    CAS  PubMed  Google Scholar 

  • Lennon SV, Martin SJ, Cotter TG (1991) Dose-dependent induction of apoptosis in human tumour cell lines by widely diverging stimuli. Cell Prolif 24(2):203–214

    CAS  PubMed  Google Scholar 

  • Liedtke AJ (1981) Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis 23(5):321–336

    CAS  PubMed  Google Scholar 

  • Liou YA, King DJ, Zibrik D, Innis SM (2007) Decreasing linoleic acid with constant alpha-linolenic acid in dietary fats increases (n-3) eicosapentaenoic acid in plasma phospholipids in healthy men. J Nutr 137(4):945–952

    CAS  PubMed  Google Scholar 

  • Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276(18):14890–14895

    CAS  PubMed  Google Scholar 

  • Listenberger LL, Schaffer JE (2002) Mechanisms of lipoapoptosis: implications for human heart disease. Trends Cardiovasc Med 12(3):134–138

    CAS  PubMed  Google Scholar 

  • Listenberger LL, Han X, Lewis SE, Cases S, Farese RV, Ory DS, Schaffer JE (2003) Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA 100(6):3077–3082

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo C-J, Chiu KC, Fu M, Lo R, Helton S (1999) Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the nfkb activity. J Surg Res 82(2):216–221

    CAS  PubMed  Google Scholar 

  • Lu T, VanRollins M, Lee H-C (2002) Stereospecific activation of cardiac atp-sensitive k+ channels by epoxyeicosatrienoic acids: a structural determinant study. Mol Pharmacol 62(5):1076–1083

    CAS  PubMed  Google Scholar 

  • Machida Y, Kubota T, Kawamura N, Funakoshi H, Ide T, Utsumi H, Li YY, Feldman AM, Tsutsui H, Shimokawa H, Takeshita A (2003) Overexpression of tumor necrosis factor-α increases production of hydroxyl radical in murine myocardium. Am J Physiol Heart Circ Physiol 284(2):H449–H455

    CAS  PubMed  Google Scholar 

  • Madden SM, Garrioch CF, Holub BJ (2009) Direct diet quantification indicates low intakes of (n-3) fatty acids in children 4 to 8 years old. J Nutr 139(3):528–532

    CAS  PubMed  Google Scholar 

  • Mantena SK, King AL, Andringa KK, Eccleston HB, Bailey SM (2008) Mitochondrial dysfunction and oxidative stress in the pathogenesis of alcohol- and obesity-induced fatty liver diseases. Free Radic Biol Med 44(7):1259–1272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mao GD, Thomas PD, Lopaschuk GD, Poznansky MJ (1993) Superoxide dismutase (sod)-catalase conjugates. Role of hydrogen peroxide and the fenton reaction in sod toxicity. J Biol Chem 268(1):416–420

    CAS  PubMed  Google Scholar 

  • Maritim AC, Sanders RA, Watkins JB 3rd (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17(1):24–38

    CAS  PubMed  Google Scholar 

  • Marklund SL (1982) Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci USA 79(24):7634–7638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsunami T, Sato Y, Ariga S, Sato T, Kashimura H, Hasegawa Y, Yukawa M (2010) Regulation of oxidative stress and inflammation by hepatic adiponectin receptor 2 in an animal model of nonalcoholic steatohepatitis. Int J Clin Exp Pathol 3(5):472–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • McLennan PL (1993) Relative effects of dietary saturated, monounsaturated, and polyunsaturated fatty acids on cardiac arrhythmias in rats. Am J Clin Nutr 57(2):207–212

    CAS  PubMed  Google Scholar 

  • Micha R, Mozaffarian D (2010) Saturated fat and cardiometabolic risk factors, coronary heart disease, stroke, and diabetes: a fresh look at the evidence. Lipids 45(10):893–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michel de Lorgeril M, Salen P, Martin JL, Monjaud I, Delaye J, Mamelle N (1999) Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the lyon diet heart study. Circulation 99(6):779–785

    Google Scholar 

  • Michiels C, Raes M, Toussaint O, Remacle J (1994) Importance of se-glutathione peroxidase, catalase, and cu/zn-sod for cell survival against oxidative stress. Free Radic Biol Med 17(3):235–248

    CAS  PubMed  Google Scholar 

  • Miller TA, LeBrasseur NK, Cote GM, Trucillo MP, Pimentel DR, Ido Y, Ruderman NB, Sawyer DB (2005) Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun 336(1):309–315

    CAS  PubMed  Google Scholar 

  • Miró Ò, Casademont J, Casals E, Perea M, Urbano-Márquez Á, Rustin P, Cardellach F (2000) Aging is associated with increased lipid peroxidation in human hearts, but not with mitochondrial respiratory chain enzyme defects. Cardiovasc Res 47(3):624–631

    PubMed  Google Scholar 

  • Moore GW, Hutchins GM, Bulkley BH, Tseng JS, Ki PF (1980) Constituents of the human ventricular myocardium: connective tissue hyperplasia accompanying muscular hypertrophy. Am Heart J 100(5):610–616

    CAS  PubMed  Google Scholar 

  • Moran LA, Scrimgeour GK, Horton RH, Ochs RS, Rawn DJ (1989) Biochemistry. Neil Patterson, Englewood Cliffs

    Google Scholar 

  • Mozaffarian D, Clarke R (2009) Quantitative effects on cardiovascular risk factors and coronary heart disease risk of replacing partially hydrogenated vegetable oils with other fats and oils. Eur J Clin Nutr 63:S22–S33

    CAS  PubMed  Google Scholar 

  • Murray R, FitzGerald GA (1989) Regulation of thromboxane receptor activation in human platelets. Proc Natl Acad Sci USA 86(1):124–128

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nag AC (1980) Study of non-muscle cells of the adult mammalian heart: a fine structural analysis and distribution. Cytobios 28(109):41–61

    CAS  PubMed  Google Scholar 

  • Nettleton JA, Katz R (2005) N-3 long-chain polyunsaturated fatty acids in type 2 diabetes: a review. J Am Diet Assoc 105(3):428–440

    CAS  PubMed  Google Scholar 

  • Nkondjock A, Shatenstein B, Maisonneuve P, Ghadirian P (2003) Assessment of risk associated with specific fatty acids and colorectal cancer among french-canadians in montreal: a case-control study. Int J Epidemiol 32(2):200–209

    PubMed  Google Scholar 

  • Nkondjock A, Krewski D, Johnson KC, Ghadirian P (2005) Specific fatty acid intake and the risk of pancreatic cancer in canada. Br J Cancer 92(5):971–977

    CAS  PubMed Central  PubMed  Google Scholar 

  • Node K, Huo Y, Ruan X, Yang B, Spiecker M, Ley K, Zeldin DC, Liao JK (1999) Anti-inflammatory properties of cytochrome p450 epoxygenase-derived eicosanoids. Science 285(5431):1276–1279

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91(6):2546–2551

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN, Tserng KY, Hoit BD, Ernsberger P, Young ME (2006) Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol 291(1):H38–H44

    CAS  PubMed  Google Scholar 

  • Packer L (2002) Superoxide dismutase. Methods in enzymology. San Diego, Academic Press

    Google Scholar 

  • Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    CAS  PubMed  Google Scholar 

  • Palmer RMJ, Ashton DS, Moncada S (1988) Vascular endothelial cells synthesize nitric oxide from I-arginine. Nature 333(6174):664–666

    CAS  PubMed  Google Scholar 

  • Parikh P, McDaniel MC, Ashen MD, Miller JI, Sorrentino M, Chan V, Blumenthal RS, Sperling LS (2005) Diets and cardiovascular disease: an evidence-based assessment. J Am Coll Cardiol 45(9):1379–1387

    CAS  PubMed  Google Scholar 

  • Prasad A, Bloom MS, Carpenter DO (2010) Role of calcium and ros in cell death induced by polyunsaturated fatty acids in murine thymocytes. J Cell Physiol 225(3):829–836

    CAS  PubMed  Google Scholar 

  • Rachek LI, Musiyenko SI, LeDoux SP, Wilson GL (2007) Palmitate induced mitochondrial deoxyribonucleic acid damage and apoptosis in I6 rat skeletal muscle cells. Endocrinology 148(1):293–299

    CAS  PubMed  Google Scholar 

  • Radomski MW, Palmer RMJ, Moncada S (1987) The role of nitric oxide and cgmp in platelet adhesion to vascular endothelium. Biochem Biophys Res Commun 148(3):1482–1489

    CAS  PubMed  Google Scholar 

  • Ramel A, Martinez A, Kiely M, Morais G, Bandarra NM, Thorsdottir I (2008) Beneficial effects of long-chain n-3 fatty acids included in an energy-restricted diet on insulin resistance in overweight and obese european young adults. Diabetologia 51(7):1261–1268

    CAS  PubMed  Google Scholar 

  • Ramsden CE, Faurot KR, Carrera-Bastos P, Cordain L, De Lorgeril M, Sperling LS (2009) Dietary fat quality and coronary heart disease prevention: a unified theory based on evolutionary, historical, global, and modern perspectives. Curr Treat Options Cardiovasc Med 11(4):289–301

    PubMed  Google Scholar 

  • Ramsden CE, Hibbeln JR, Majchrzak SF, Davis JM (2010) N-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on chd risk: a meta-analysis of randomised controlled trials. Br J Nutr 104(11):1586–1600

    CAS  PubMed  Google Scholar 

  • Reaven P, Parthasarathy S, Grasse BJ, Miller E, Almazan F, Mattson FH, Khoo JC, Steinberg D, Witztum JL (1991) Feasibility of using an oleate-rich diet to reduce the susceptibility of low-density lipoprotein to oxidative modification in humans. Am J Clin Nutr 54(4):701–706

    CAS  PubMed  Google Scholar 

  • Renaud S, Ciavatti M, Thevenon C, Ripoll J (1983) Protective effects of dietary calcium and magnesium on platelet function and atherosclerosis in rabbits fed saturated fat. Atherosclerosis 47(2):187–198

    CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Klöting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Blüher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci USA 106(21):8665–8670

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54(1):8–14

    CAS  PubMed  Google Scholar 

  • Roberts RA, Laskin DL, Smith CV, Robertson FM, Allen EMG, Doorn JA, Slikker W (2009) Nitrative and oxidative stress in toxicology and disease. Toxicol Sci 112(1):4–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson JD, Maughan RJ, Duthie GG, Morrice PC (1991) Increased blood antioxidant systems of runners in response to training load. Clin Sci (Colch) 80(6):611–618

    CAS  Google Scholar 

  • Rudel LL, Johnson FL, Sawyer JK, Wilson MS, Parks JS (1995) Dietary polyunsaturated fat modifies low-density lipoproteins and reduces atherosclerosis of nonhuman primates with high and low diet responsiveness. Am J Clin Nutr 62(2):463S–470S

    CAS  PubMed  Google Scholar 

  • Rustan AC, Nenseter MS, Drevon CA (1997) Omega-3 and omega-6 fatty acids in the insulin resistance syndrome. Lipid and lipoprotein metabolism and atherosclerosis. Ann N Y Acad Sci 827:310–326

    CAS  PubMed  Google Scholar 

  • Ruxton CHS, Reed SC, Simpson MJA, Millington KJ (2004) The health benefits of omega-3 polyunsaturated fatty acids: a review of the evidence. J Hum Nutr Diet 17(5):449–459

    CAS  PubMed  Google Scholar 

  • Safarinejad MR, Hosseini SY, Dadkhah F, Asgari MA (2010) Relationship of omega-3 and omega-6 fatty acids with semen characteristics, and anti-oxidant status of seminal plasma: a comparison between fertile and infertile men. Clin Nutr 29(1):100–105

    CAS  PubMed  Google Scholar 

  • Samokhvalov V, Bilan PJ, Schertzer JD, Antonescu CN, Klip A (2009) Palmitate- and lipopolysaccharide-activated macrophages evoke contrasting insulin responses in muscle cells. Am J Physiol Endocrinol Metab 296(1):E37–E46

    CAS  PubMed  Google Scholar 

  • Saraswathi V, Wu G, Toborek M, Hennig B (2004) Linoleic acid-induced endothelial activation: role of calcium and peroxynitrite signaling. J Lipid Res 45(5):794–804

    CAS  PubMed  Google Scholar 

  • Schmitz G, Ecker J (2008) The opposing effects of n-3 and n-6 fatty acids. Prog Lipid Res 47(2):147–155

    CAS  PubMed  Google Scholar 

  • Sebastiani M, Giordano C, Nediani C, Travaglini C, Borchi E, Zani M, Feccia M, Mancini M, Petrozza V, Cossarizza A, Gallo P, Taylor RW, d’Amati G (2007) Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. J Am Coll Cardiol 50(14):1362–1369

    CAS  PubMed  Google Scholar 

  • Sergent O, Pereira M, Belhomme C, Chevanne M, Huc L, Lagadic-Gossmann D (2005) Role for membrane fluidity in ethanol-induced oxidative stress of primary rat hepatocytes. J Pharmacol Exp Ther 313(1):104–111

    CAS  PubMed  Google Scholar 

  • Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH (1998) Lipoapoptosis in beta-cells of obese prediabeticfa/fa rats. J Biol Chem 273(49):32487–32490

    CAS  PubMed  Google Scholar 

  • Shingu M, Yoshioka K, Nobunaga M, Yoshida K (1985) Human vascular smooth muscle cells and endothelial cells lack catalase activity and are susceptible to hydrogen peroxide. Inflammation 9(3):309–320

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

    CAS  PubMed  Google Scholar 

  • Slawik M, Vidal-Puig AJ (2006) Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 5(2):144–164

    CAS  PubMed  Google Scholar 

  • Sreekumar R, Unnikrishnan J, Fu A, Nygren J, Short KR, Schimke J, Barazzoni R, Nair KS (2002) Effects of caloric restriction on mitochondrial function and gene transcripts in rat muscle. Am J Physiol Endocrinol Metab 283(1):38–43

    Google Scholar 

  • Suematsu M, Tamatani T, Delano FA, Miyasaka M, Forrest M, Suzuki H, Schmid-Schonbein GW (1994) Microvascular oxidative stress preceding leukocyte activation elicited by in vivo nitric oxide suppression. Am J Physiol Heart Circ Physiol 266(6):2410–2415

    Google Scholar 

  • Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-α–induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107(10):1418–1423

    CAS  PubMed  Google Scholar 

  • Tanito M, Brush RS, Elliott MH, Wicker LD, Henry KR, Anderson RE (2009) High levels of retinal membrane docosahexaenoic acid increase susceptibility to stress-induced degeneration. J Lipid Res 50(5):807–819

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas DW, Rocha PN, Nataraj C, Robinson LA, Spurney RF, Koller BH, Coffman TM (2003) Proinflammatory actions of thromboxane receptors to enhance cellular immune responses. J Immunol 171(12):6389–6395

    CAS  PubMed  Google Scholar 

  • Trevizol F, Benvegnu DM, Barcelos RC, Boufleur N, Dolci GS, Muller LG, Pase CS, Reckziegel P, Dias VT, Segat H, Teixeira AM, Emanuelli T, Rocha JB, Burger ME (2011) Comparative study between n-6, trans and n-3 fatty acids on repeated amphetamine exposure: a possible factor for the development of mania. Pharmacol Biochem Behav 97(3):560–565

    CAS  PubMed  Google Scholar 

  • Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a mediterranean diet and survival in a greek population. N Engl J Med 348(26):2599–2608

    PubMed  Google Scholar 

  • Tsai WC, Li YH, Lin CC, Chao TH, Chen JH (2004) Effects of oxidative stress on endothelial function after a high-fat meal. Chin Sci (Colch) 106(3):315–319

    CAS  Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53(1):319–336

    CAS  PubMed  Google Scholar 

  • Unger RH, Zhou YT (2001) Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes 50(suppl 1):S118

    CAS  PubMed  Google Scholar 

  • Ungvari Z, Sosnowska D, Podlutsky A, Koncz P, Sonntag WE, Csiszar A (2011) Free radical production, antioxidant capacity, and oxidative stress response signatures in fibroblasts from lewis dwarf rats: effects of life span-extending peripubertal gh treatment. J Gerontol A Biol Sci Med Sci 66(5):501–510

    PubMed  Google Scholar 

  • Villacara A, Spatz M, Dodson RF, Corn C, Bembry J (1989) Effect of arachidonic acid on cultured cerebromicrovascular endothelium: permeability, lipid peroxidation and membrane “fluidity”. Acta Neuropathol 78(3):310–316

    CAS  PubMed  Google Scholar 

  • Vliegen HW, van der Laarse A, Cornelisse CJ, Eulderink F (1991) Myocardial changes in pressure overload-induced left ventricular hypertrophy. A study on tissue composition, polyploidization and multinucleation. Eur Heart J 12(4):488–494

    CAS  PubMed  Google Scholar 

  • Voet D, Voet JG (2005) Biochemistry. Wiley, New York

    Google Scholar 

  • Walker CA, Spinale FG (1999) The structure and function of the cardiac myocyte: a review of fundamental concepts. J Thorac Cardiovasc Surg 118(2):375–382

    CAS  PubMed  Google Scholar 

  • Wall SR, Lopaschuk GD (1989) Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats. BBA Lipid Lipid Met 1006(1):97–103

    CAS  Google Scholar 

  • Wang Q, Liang X, Wang L, Lu X, Huang J, Cao J, Li H, Gu D (2012) Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 221(2):536–543

    CAS  PubMed  Google Scholar 

  • Wei Y, Wang D, Topczewski F, Pagliassotti MJ (2006) Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab 291(2):275–281

    Google Scholar 

  • Weisiger RA, Fridovich I (1973) Superoxide dismutase: organelle specificity. J Biol Chem 248(10):3582–3592

    CAS  PubMed  Google Scholar 

  • Weiss B, Stoffel W (1997) Human and murine serine-palmitoyl-coa transferase. Eur J Biochem 249(1):239–247

    CAS  PubMed  Google Scholar 

  • Xu Y, Fang F, Dhar SK, Bosch A, Stclair WH, Kasarskis EJ, Stclair DK (2008) Mutations in the sod2 promoter reveal a molecular basis for an activating protein 2-dependent dysregulation of manganese superoxide dismutase expression in cancer cells. Mol Cancer Res 6(12):1881–1893

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan YV, Kitts DD (2003) Dietary (n-3) fat and cholesterol alter tissue antioxidant enzymes and susceptibility to oxidation in shr and wky rats. J Nutr 133(3):679–688

    CAS  PubMed  Google Scholar 

  • Zerouga M, Stillwell W, Stone J, Powner A, Jenski LJ (1996) Phospholipid class as a determinant in docosahexaenoic acid’s effect on tumor cell viability. Anticancer Res 16(5A):2863–2868

    CAS  PubMed  Google Scholar 

  • Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, Unger RH (2000) Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 97(4):1784–1789

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

A Scholar award and Grant-In-Aids from the Canadian Diabetes Association and University Start-up Funds to SG supported this work. A Masters award from NSERC funds JB and AB is funded by a CIHR Doctoral Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Beam, J., Botta, A., Barendregt, R., Ghosh, S. (2014). Dietary Fatty Acids, Redox Signaling, and the Heart. In: Laher, I. (eds) Systems Biology of Free Radicals and Antioxidants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30018-9_44

Download citation

Publish with us

Policies and ethics