Skip to main content

Nanomedicines for Immunization and Vaccines

  • Chapter
  • First Online:
Book cover Patenting Nanomedicines

Abstract

Immunization and treatment of infectious diseases is been extensively exploited to develop better and safe vaccines. The efforts have been made to improve the effectiveness of vaccines and for this reason nanomedicine emerges as the ultimate alternative. Most common infectious diseases, such as hepatite B virus (HBV), human immunodeficiency virus/ acquired immune deficiency syndrome (HIV/AIDS) malaria, human papillomavirus (HPV) and tuberculosis (TB), have aggressive and prolonged treatments, and for this purpose the development of novel therapeutic systems is a priority aiming at reducing cytotoxicity and drug resistance. Examples of these novel systems are solid lipid nanoparticles (SLN), polymeric, inorganic, metallic, magnetic, viral-based nanoparticles and dendrimers that have been received more attention for their proven efficiency in providing immunization, targeting and triggering antibody response at the cellular level. This review focuses on the efforts that have been made towards the development of novel approaches and also patented and marketed formulations of nanocarrier-based vaccine formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi K, Kawana K, Yokoyama T, Fujii T, Tomio A, Miura S, Tomio K, Kojima S, Oda K, Sewaki T et al (2010) Oral immunization with a Lactobacillus casei vaccine expressing human papillomavirus (HPV) type 16 E7 is an effective strategy to induce mucosal cytotoxic lymphocytes against HPV16 E7. Vaccine 28(16):2810–2817

    Article  Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2008) Novel chemotherapy for tuberculosis: chemotherapeutic potential of econazole- and moxifloxacin-loaded PLG nanoparticles. Int J Antimicrob Agents 31(2):142–146

    Article  Google Scholar 

  • Aline F, Brand D, Pierre J, Roingeard P, Séverine M, Varrier B, Damier-Poisson I (2009) Dendritic cells loaded with HIV-1 p24 proteins adsorbed on surfactant-free anionic PLA nanoparticles induce enhanced cellular immune responses against HIV-1 after vaccination. Vaccine 27(38):5284–5291

    Article  Google Scholar 

  • Arias MA, Loxley A, Eatmon C, Van Roey G, Faihrurst D et al (2011) Carnauba wax nanoparticles enhance strong systemic and mucosal cellular and humoral immune responses to HIV-gp140 antigen. Vaccine 29(6):1258–1269

    Article  Google Scholar 

  • Bajpai SK, Mohan YM, Bajpai M, Tankhiwale R, Thomas V (2007) Synthesis of polymer stabilized silver and gold nanostructures. J Nanosci Nanotechnol 7(9):2994–3010

    Article  Google Scholar 

  • Bastús NG, Sánchez-Tilló E, Pujals S, Farrera C, Kogan MJ, Giralt E, Celada A, Lloberas J, Puntes V (2009) Peptides conjugated to gold nanoparticles induce macrophage activation. Mol Immunology 46(4):743–748

    Article  Google Scholar 

  • Bawa R (2005) Will the nanomedicine “patent land grab” thwart commercialization? Nanomedicine 1(4):346–350

    Article  Google Scholar 

  • Bawa R (2008) Nanoparticle-based therapeutics in humans: a survey. Nanotechonol Law Bus 5(2):135–155

    Google Scholar 

  • Bawa R (2010) Nanopharmaceuticals. Eur J Nanomedicine 3(1):34–40

    Google Scholar 

  • Bharali DJ, Pradhan V, Elkin G, Qi W, Hutson A, Mousa SA, Thanavala Y (2008) Novel nanoparticles for the delivery of recombinant hepatitis B vaccine. Nanomedicine 4(4):311–317

    Article  Google Scholar 

  • Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KLMC, Friggen AH et al (2009) Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen Rv1733c associated to PLGA-PEI nanoparticles enhances T cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 27(30):4010–4017

    Article  Google Scholar 

  • Boas U, Heegaard PM (2004) Dendrimers in drug research. Chem Soc Rev 33(1):43–63

    Article  Google Scholar 

  • Bolhassani A, Safaiyan S, Sima R (2011) Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 10(3). doi:10.1186/1476-4598-10-3

    Google Scholar 

  • Borges O, Silva M, de Souza A, Borchard G, Junginger HE, Cordeiro-da-Silva A (2008) Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. Int Immunopharmacol 8(13–14):1773–1780

    Article  Google Scholar 

  • Bourne N, Stanberry LR, Kern ER, Holan G, Matthews B, Bernstein DI (2000) Dendrimers, a new class of candidate topical microbicides with activity against herpes simplex virus infection. Antimicrob Agents Chemother 44(9):2471–2474

    Article  Google Scholar 

  • Carcaboso AM, Hernandez RM, Igartua M, Gascon AR, Rosas JE, Patarroyo ME, Pedraz JL (2003) Immune response after oral administration of the encapsulated malaria synthetic peptide SPf66. Int J Pharm 260(2):273–282

    Article  Google Scholar 

  • Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and bimetallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Biointerfaces 83(1):42–48

    Article  Google Scholar 

  • Cech PG, Aebi T, Abbdallah MS, Mpina M, Machunda EB, Westerfeld N et al (2011) Virosome-formulated Plasmodium falciparum AMA-1 & CSP derived peptides as malaria vaccine: randomized phase 1b trial in semi-immune adults & children. PLoS One 6(7):e22273

    Article  Google Scholar 

  • Chen YS, Hung YC, Lin WH, Huang GS (2010) Assessment of gold nanoparticles as a size-dependent vaccine carrier for enhancing the antibody response against synthetic foot-and-mouth disease virus peptide. Nanotechnology 21(19):195101

    Article  Google Scholar 

  • Combadiere B, Mahe B (2008) Particle-based vaccines for transcutaneous vaccination. Comp Immunol Microbiol Infect Dis 31(2–3):293–315

    Article  Google Scholar 

  • FDA Consumer Health Information (2011) FDA Opens Dialogue on ‘Nano’ Regulation. http://www.fda.gov/downloads/ForConsumers/ConsumerUpdates/UCM258691.pdf. Accessed 16 Jun 2011

  • Daftarian P, Kaifer AE, Li W, Blomberg BB, Frasca D, Roth F, Chowdhury R, Berg EA, et al (2011) Peptide-conjugated PAMAM dendrimer as a universal DNA vaccine platform to target antigen-presenting cells. Cancer Res. 71(24):7452–7462

    Google Scholar 

  • das Neves J, Amiji MM, Bahia MF, Sarmento B (2010) Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 62(4–5):458–477

    Article  Google Scholar 

  • Dutta T, Garg M, Jain NK (2008a) Targeting of efavirenz loaded tuftsin conjugated poly(propyleneimine) dendrimers to HIV infected macrophages in vitro. Eur J Pharm Sci 34(2–3):181–189

    Article  Google Scholar 

  • Dutta T, Garg M, Jain NK (2008b) Poly(propyleneimine) dendrimer and dendrosome mediated genetic immunization against hepatitis B. Vaccine 26(27–28):3389–3394

    Article  Google Scholar 

  • Dutta T, Burgess M, McMillan NA, Parekh HS (2010) Dendrosome-based delivery of siRNA against E6 and E7 oncogenes in cervical cancer. Nanomedicine 6(3):463–470

    Article  Google Scholar 

  • Fangueiro JF, Gonzalez-Mira E, Martins-Lopes P, Egea MA, Garcia ML, Souto SB, Souto EB (2011) A novel lipid nanocarrier for insulin delivery: production, characterization and toxicity testing. Pharm Dev Technol. doi:10.3109/10837450.2011.591804

  • Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17(8):2950–2962

    Article  Google Scholar 

  • Glenn GM, Alving CR (2011) Method of transcutaneous immunization using antigen. United States Patent 20110243979

    Google Scholar 

  • Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S (2010) In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur J Pharm Sci 41(2):360–368

    Article  Google Scholar 

  • Govan VA, Rybicki EP, Williamson AL (2008) Therapeutic immunisation of rabbits with cottontail rabbit papillomavirus (CRPV) virus-like particles (VLP) induces regression of established papillomas. Virol J 5:45

    Article  Google Scholar 

  • Guo Z, Pereira T, Choi O, Wang Y, Thomas Hahn H (2006) Surface functionalized alumina nanoparticle filled polymeric nanocomposites with enhanced mechanical properties. J Mater Chem 16:2800–2808

    Article  Google Scholar 

  • Gupta U, Jain NK (2010) Non-polymeric nano-carriers in HIV/AIDS drug delivery and targeting. Adv Drug Deliv Rev 62(4–5):478–490

    Article  Google Scholar 

  • Gupta PN, Mahor S, Rawat A, Khatri K, Goyal A, Vyas SP (2006) Lectin anchored stabilized biodegradable nanoparticles for oral immunization: 1. Development and in vitro evaluation. Int J Pharm 318(1–2):163–173

    Article  Google Scholar 

  • Hatz C, Beck B, Steffen R, Genton B, d’Acremont V, Loutan L, HartmannK HC (2011) Real-life versus package insert: a post-marketing study on adverse-event rates of the virosomal hepatitis A vaccine Epaxal® in healthy travellers. Vaccine 29(31):5000–5006

    Article  Google Scholar 

  • Heike B (2011) Structural properties of solid lipid based colloidal drug delivery systems. Curr Opin Colloid Interface Sci 16(5):405–411

    Article  Google Scholar 

  • Heimo B, Hubert P, Zielinski C, Jensen-Jarolim E, Scheiner O (2010) Oral vaccination United States Patent 20100183684

    Google Scholar 

  • Hock SC, Ying YM, Lai WC (2011) A review of the current scientific and regulatory status of nanomedicines and the challenges ahead. PDA J Pharm Sci Technol 65(2):177–195

    Google Scholar 

  • Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6(1):1–19

    Article  Google Scholar 

  • Hu K, Dou J, Yu F, He X, Yuan X, Wang Y, Liu C, Gu N (2010) An ocular mucosal administration of nanoparticles containing DNA vaccine pRSC-gD-IL-21 confers protection against mucosal challenge with herpes simplex virus type 1 in mice. Vaccine 29(7):1455–1462

    Article  Google Scholar 

  • Hunter R, Strickland F, Kezdy F (1981) The adjuvant activity of nonionic block polymer surfactantsI. The role of hydrophile-lipophile balance. J Immunol 127(3):1244–1250

    Google Scholar 

  • Jain V, Vyas SP, Kohli DV (2009a) Well-defined and potent liposomal hepatitis B vaccines adjuvanted with lipophilic MDP derivatives. Nanomedicine 5(3):334–344

    Article  Google Scholar 

  • Jain AK, Goyal AK, Gupta PN, Khatri K, Mishra N, Mehta A, Mangal S, Vyas SP (2009b) Synthesis, characterization and evaluation of novel triblock copolymer based nanoparticles for vaccine delivery against hepatitis B. J Control Rel 136(2):161–169

    Article  Google Scholar 

  • Joshi MD, Muller RH (2009) Lipid nanoparticles for parenteral delivery of actives. Eur J Pharm Biopharm 71(2):161–172

    Article  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414

    Article  Google Scholar 

  • Kisich KO, Gelperina S, Higgins MP, Wilson S, Shipulo E, Oganesyan E, Heifets L (2007) Encapsulation of moxifloxacin within poly(butyl cyanoacrylate) nanoparticles enhances efficacy against intracellular Mycobacterium tuberculosis. Int J Pharm 345(1–2):154–162

    Article  Google Scholar 

  • Koppad S, Raj GD, Rej GD, Gopinath VP, Kirubaharan JJ, Thangavelu A, Thiagarajan V (2011) Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens. Res Vet Sci 91(3):384–390

    Article  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 75(1):1–18

    Article  Google Scholar 

  • Lamalle-Bernard D, Munier S, Compagnon C, Charles MH, Kalyanaraman VS, Delair T, Varrier B, Ataman-Önal Y (2006) Coadsorption of HIV-1 p24 and gp120 proteins to surfactant-free anionic PLA nanoparticles preserves antigenicity and immunogenicity. J Control Rel 115(1):57–67

    Article  Google Scholar 

  • Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8(1). doi:10.1186/1477-3155-8-1

  • Letchford K, Burt H (2007) A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm 65(3):259–269

    Article  Google Scholar 

  • Look M, Bandyopadhyay A, Blum GS, Fahmy TM (2010) Application of nanotechnologies for improved immune response against infectious diseases in the developing world. Adv Drug Deliv Rev 62(4–5):378–393

    Article  Google Scholar 

  • Luo D, Han E, Belcheva N, Saltzman WM (2004) A self-assembled, modular DNA delivery system mediated by silica nanoparticles. J Control Rel 95(2):333–341

    Article  Google Scholar 

  • Ma W, Smith T, Bogin V, Zhang Y, Ozkan C, Ozkan M et al (2011) Enhanced presentation of MHC class Ia, Ib and class II-restricted peptides encapsulated in biodegradable nanoparticles: a promising strategy for tumor immunotherapy. J Transl Med 9:34

    Article  Google Scholar 

  • Martins S, Sarmento B, Ferreira DC, Souto EB (2007) Lipid-based colloidal carriers for peptide and protein delivery–liposomes versus lipid nanoparticles. Int J Nanomedicine 2(4):595–607

    Google Scholar 

  • Mata E, Carcaboso AM, Hernandez RM, Igartua M, Corradin G, Pedraz JL (2007) Adjuvant activity of polymer microparticles and Montanide ISA 720 on immune responses to Plasmodium falciparum MSP2 long synthetic peptides in mice. Vaccine 25(5):877–885

    Article  Google Scholar 

  • Matsuo K, Koizumi H, Akashi M, Nakagawa S, Fujita T, Yamamoto A, Okada N (2011) Intranasal immunization with poly(gamma-glutamic acid) nanoparticles entrapping antigenic proteins can induce potent tumor immunity. J Control Rel 152(2):310–316

    Article  Google Scholar 

  • Minev BR (2008) Use of polymeric nanoparticles for vaccine delivery. United States Patent 20080044484

    Google Scholar 

  • Moghimi SM, Moghimi M (2008) Enhanced lymph node retention of subcutaneously injected IgG1-PEG2000-liposomes through pentameric IgM antibody-mediated vesicular aggregation. Biochim Biophys Acta 1778(1):51–55

    Article  Google Scholar 

  • Mora-Huertas CE, Fessi H, Elaissari A (2010) Polymer-based nanocapsules for drug delivery. Int J Pharm 385:113–142

    Article  Google Scholar 

  • Moretton MA, Glisoni RJ, Chiappetta DA, Sosnik A (2010) Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles. Colloids Surf B Biointerfaces 79(2):467–479

    Article  Google Scholar 

  • Muchow M, Maincent P, Muller RH (2008) Lipid nanoparticles with a solid matrix (SLN, NLC, LDC) for oral drug delivery. Drug Dev Ind Pharm 34(12):1394–1405

    Article  Google Scholar 

  • Muller RH, Mader K (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  • Nagy JO, Bargatze RF, Jutila JW, Cutler JE, Glee PM (2007) Nanoparticle vaccines. United States Patent 7285289

    Google Scholar 

  • Nayak AP, Tiyaboonchai W, Patankar S, Madhusudhan B, Souto EB (2010) Curcuminoids-loaded lipid nanoparticles: novel approach towards malaria treatment. Colloids Surf B Biointerfaces 81(1):263–273

    Article  Google Scholar 

  • Nishioka Y, Yoshino H (2001) Lymphatic targeting with nanoparticulate system. Adv Drug Deliv Rev 47(1):55–64

    Article  Google Scholar 

  • Noguez C, Garzon IL (2009) Optically active metal nanoparticles. Chem Soc Rev 38(3):757–771

    Article  Google Scholar 

  • Oberdorster G (2010) Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology. J Intern Med 267(1):89–105

    Article  Google Scholar 

  • Panda AK, Vibhu K (2010) Polymer particles based vaccine. United States Patent 20100112078

    Google Scholar 

  • Pittet LAM, Gao Y, Zepp C, Lipford GB (2011) Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines United States Patent 20110171248

    Google Scholar 

  • Plummer EM, Manchester M (2011) Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3(2):174–193

    Article  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36(7):887–913

    Article  Google Scholar 

  • Reddy ST, Berk DA, Jain RK, Swartz MA (2006a) A sensitive in vivo model for quantifying interstitial convective transport of injected macromolecules and nanoparticles. J Appl Physiol 101(4):1162–1169

    Article  Google Scholar 

  • Reddy ST, Swartz MA, Hubbell JA (2006b) Targeting dendritic cells with biomaterials: developing the next generation of vaccines. Trends Immunol 27(12):573–579

    Article  Google Scholar 

  • Santos-Magalhaes NS, Mosqueira VC (2010) Nanotechnology applied to the treatment of malaria. Adv Drug Deliv Rev 62(4–5):560–575

    Article  Google Scholar 

  • Schmid G (2008) Ionically cross-linked gold clusters and gold nanoparticles. Angew Chem Int Ed Engl 47(19):3496–3498

    Article  Google Scholar 

  • Sheng KC, Kalkanidis M, Pouniotis DS, Esparon S, Tang CK, Apostolopoulos V, Pietersz GA (2008) Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicity in vitro and in vivo. Eur J Immunol 38(2):424–436

    Article  Google Scholar 

  • Shriver LP, Koudelka KJ, Manchester M (2009) Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol 211(1–2):66–72

    Article  Google Scholar 

  • Singh KK, Vingkar SK (2008) Formulation, antimalarial activity and biodistribution of oral lipid nanoemulsion of primaquine. Int J Pharm 347(1–2):136–143

    Article  Google Scholar 

  • Skwarczynski M, Toth I (2011) Peptide-based subunit nanovaccines. Curr Drug Deliv 8(3):282–289

    Google Scholar 

  • Slowing II, Vivero-Escoto JL, Wu CW, Lin VSY (2008) Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev 60(11):1278–1288

    Article  Google Scholar 

  • Sosnik A, Carcaboso AM, Glisoni RJ, Moretton MA, Chiappetta DA (2010) New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv Drug Deliv Rev 62(4–5):547–559

    Article  Google Scholar 

  • Souto EB (2009) A special issue on Lipid-based delivery systems (liposomes, lipid nanoparticles, lipid matrices and medicines). J Biomed Nanotechnol 5(4):315–316

    Article  Google Scholar 

  • Souto EB, Doktorovova S (2009) Solid lipid nanoparticle formulations pharmacokinetic and biopharmaceutical aspects in drug delivery. Methods Enzymol 464:105–129

    Article  Google Scholar 

  • Steinmetz NF (2010) Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. Nanomed Nanotechnol Biol Med 6(5):634–641

    Article  Google Scholar 

  • Ulery BD, Kumar D, Ramer-Tait A, Metzger DW, Wannemuehler MJ, Narasimhan B (2011) Design of a protective single-dose intranasal nanoparticle-based vaccine platform for respiratory infectious diseases. PLoS One 6(3):e17642

    Article  Google Scholar 

  • Wang J, Feng SS, Wang S, Chen ZY (2010) Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm 400(1–2):194–200

    Article  Google Scholar 

  • Wei HJ, Chang W, Lin SC, Liu WC, Chang DK, Chong P, Wu SC (2011) Fabrication of influenza virus-like particles using M2 fusion proteins for imaging single viruses and designing vaccines. Vaccine 29(41):7163–7172

    Article  Google Scholar 

  • Wiechers J, Souto EB (2010) Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) as Novel Delivery Systems for Cosmetic Actives. Part I. Cosmetics and Toiletries 10:22–30

    Google Scholar 

  • Wilson-Welder JH, Torres MP, Kipper MJ, Mallapragada SK, Wannemuehler MJ, Narasimhan B (2009) Vaccine adjuvants: current challenge and future approaches. J Pharm Sci 98:1278–1316

    Google Scholar 

  • Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63(6):456–469

    Article  Google Scholar 

  • Xiang SD, Selomulya C, Ho J, Apostolopoulos V, Plebanski M (2010) Delivery of DNA vaccines: an overview on the use of biodegradable polymeric and magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(3):205–218

    Article  Google Scholar 

  • Xu FJ, Zeng QH, Lu GQ, Yu AB (2006) Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Science 61:1027–1040

    Article  Google Scholar 

  • Zolnik BS, Gonzalez-Fernandez A, Sadrieh N, Dobrovolskaia MA (2010) Nanoparticles and the immune system. Endocrinology 151(2):458–465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliana B. Souto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fangueiro, J.F., Severino, P., Souto, S.B., Souto, E.B. (2012). Nanomedicines for Immunization and Vaccines. In: Souto, E. (eds) Patenting Nanomedicines. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29265-1_15

Download citation

Publish with us

Policies and ethics