Skip to main content

A Distributed Challenge Detection System for Resilient Networks

  • Conference paper
  • 1747 Accesses

Abstract

The network has become essential to our daily life. With the increase in dependence, challenges to the normal operation of the network bear ever more severe consequences. Challenges include malicious attacks, misconfigurations, faults, and operational overloads. Understanding challenges is needed to build resilience mechanism. A crucial part of resilience strategy involves real-time detection of challenges, followed by identification to initiate appropriate remediation. We observe that the state-of-art to challenge detection is insufficient. Our goal is to advocate a new autonomic, distributed challenge detection approach. In this paper, we present a resilient distributed system to identify the challenges that have severe impact on the wired and wireless mesh network (WMN). Our design shows how a challenge (malicious attack) is handled initially by lightweight network monitoring, then progressively applying more heavyweight analysis in order to identify the challenge. Non-malicious challenges could also be simulated by our network failure module. Furthermore, WMNs are an interesting domain to consider network resilience. Automatic detection and mitigation is a desirable property of a resilient WMN. We present guidelines to address the challenge of channel interferences in the WMN. The feasibility of our framework is demonstrated through experiment. We conclude that our proof-of-concept case study has provided valuable insight into resilient networks, which will be useful for further research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ResumeNet, http://www.resumenet.eu/

  2. Doerr, C., Omic, J., et al.: Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D2.1b (2010)

    Google Scholar 

  3. Smith, P., Fry, M., et al.: Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D2.2a (2010)

    Google Scholar 

  4. Jung, J., Paxson, V., Berger, A., Balakrishnan, H.: Fast portscan detection using sequential hypothesis testing, pp. 211–225. IEEE, Los Alamitos (2004)

    Google Scholar 

  5. Wuhib, F., Stadler, R.: Decentralised Service-Level Monitoring Using Network Threshold Alerts. IEEE Communications Magazine, 44 (2006)

    Google Scholar 

  6. Jackson, A.W., Milliken, W., Santivanez, C.a., Condell, M., Strayer, W.T.: A Topological Analysis of Monitor Placement, pp. 169–178. IEEE, Los Alamitos (2007)

    Google Scholar 

  7. Fry, M., Fischer, M., Karaliopoulos, M., Smith, P., Hutchison, D.: Challenge identification for network resilience. IEEE, Los Alamitos (2010)

    Book  Google Scholar 

  8. Peng, T., Leckie, C., Ramamohanarao, K.: Survey of Network-Based Defense Mechanisms Countering the DoS and DDoS Problems. ACM Computing Surveys 1, 39 (2007)

    Google Scholar 

  9. Labovitz, C., Ahuja, A., Bose, A., Jahanian, F.: Delayed internet routing convergence. IEEE/ACM Transactions Networking 9, 293–306 (2001)

    Article  Google Scholar 

  10. Steinder, M., Sethi, A.S.: A survey of fault localization techniques in computer networks. Science of Computer Programming 53, 165–194 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Qiu, L., Zhang, Y., Wang, F., Han, M.K., Mahajan, R.: A general model of wireless interference, pp. 171–182. ACM, NY (2007)

    Google Scholar 

  12. Kotz, D., Newport, C., Gray, R. S., Liu, J., Yuan, Y., Elliott, C.: Experimental evaluation of wireless simulation assumptions, Technical Report, Dartmouth College (2004)

    Google Scholar 

  13. Fessi A., Plattner, B., et al.: Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D1.5 (2009)

    Google Scholar 

  14. Doerr, C., Smith, P., et al.: Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D2.3a (2010)

    Google Scholar 

  15. Mayer, C.P., Gamer, T.: Integrating real world applications into OMNeT, Institute of Telematics, University of Karlsruhe, Karlsruhe, Germany (2008)

    Google Scholar 

  16. Lippmann, R., et al.: The 1999 DARPA Off-Line Intrusion Detection Evaluation. Computer Networks 34(4), 579–595 (2000)

    Article  Google Scholar 

  17. Mahoney, M.V., Chan, P.K.: An analysis of the 1999 DARPA/Lincoln Laboratory Evaluation Data for network anomaly detection. In: Vigna, G., Krügel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  18. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.: A Detailed Analysis of the KDD CUP 99 Data Set. IEEE, Los Alamitos (2009)

    Book  Google Scholar 

  19. Brugger, T.: KDD Cup 1999 dataset considered harmful, White Paper, Department of Computer Science, University of California Davis (2007)

    Google Scholar 

  20. Weingartner, E., vom Lehn, H., Wehrle, K.: A performance comparison of recent network simulators, pp. 1–5. IEEE, Germany (2009)

    Google Scholar 

  21. Kargl, F., Schoch, E.: Simulation of MANETs: A qualitative comparison between JiST/SWANS and NS-2. In: International Workshop on MobiEval (2007)

    Google Scholar 

  22. Young, C.P., Chang, B.R., Chen, S.Y., Wang, L.C.: A Highway Traffic Simulator with Dedicated Short Range Communications Based Cooperative Collision Prediction and Warning Mechanism. IEEE, Los Alamitos (2008)

    Book  Google Scholar 

  23. Schmidt-Eisenlohr, F., et al.: Cumulative Noise and 5.9GHz DSRC Extensions for ns-2.28, University of Karlsruhe, Tech. Rep. (2006)

    Google Scholar 

  24. Johansson B., et al.: Highway Mobility And Vehicular Ad-Hoc Networks In NS-3, CiteSeerX (2010)

    Google Scholar 

  25. Eichler, S.: Strategies for pseudonym changes in vehicular ad hoc networks depending on node mobility. In: Proceedings of the 2007 IEEE Intelligent Vehicles Symposium (2007)

    Google Scholar 

  26. Orfanus, D., Lessmann, J., Janacik, P., Lachev, L.: In Performance of wireless network simulators: a case study, pp. 59–66. ACM, New York (2008)

    Google Scholar 

  27. Cetinkaya, E.K., Jabbar, A., Mahmood, R., Sterbenz, J.P.G.: Modelling Network Attacks and Challenges: A Simulation-based Approach. In: EDCC, Valencia, Spain (2010)

    Google Scholar 

  28. Varga, A.: OMNeT++ User Manual, http://www.omnetpp.org/doc/manual/usman.html

  29. Mell, P., Hu, V., Lipmann, R., et al.: An Overview of Issues in Testing Intrusion Detection Systems, Technical Report, National Institute of Standard and Technology (2003)

    Google Scholar 

  30. Gamer, T., Scharf, M.: Realistic Simulation Environments for IP-based Networks. In: ICTS (2008)

    Google Scholar 

  31. Wuhib, F., Stadler, R.: Decentralised Service-Level Monitoring Using Network Threshold Alerts. IEEE Communications Magazine, 44 (2006)

    Google Scholar 

  32. Smith, P., Fry, M., et al.: Resilience and Survivability for future networking: framework, mechanisms, and experimental evaluation, ResumeNet Deliverable D2.2b (2010)

    Google Scholar 

  33. Rasheed, T.: Wireless Mesh Network Simulation Framework for OMNeT++, Create-Net Technical Report (2007)

    Google Scholar 

  34. Maureira, J.C., Dalle, O., Dujovne, D.: Generation of Realistic 802.11 Interferences in the Omnet++ INET Framework Based on Real Traffic Measurements. In: ICST (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Yu, Y. (2012). A Distributed Challenge Detection System for Resilient Networks. In: Zhang, X., Qiao, D. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2010. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 74. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29222-4_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29222-4_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29221-7

  • Online ISBN: 978-3-642-29222-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics