Skip to main content

PET and fMRI Imaging in Parietal Cortex (SI, SII, Inferior Parietal Cortex BA40)

  • Reference work entry
Encyclopedia of Pain

Synonyms

fMRI imaging and PET in parietal cortex; Parietal cortex; PET and fMRI imaging

Definition

Parietal cortex approximates the superior middle third of the cerebral cortex, occupying a portion of the two hemispheres situated below the crown of the head. The parietal cortex is positioned in front of the occipital lobe and behind the frontal lobe. The human parietal cortex can be subdivided into the postcentral and posterior parietal regions; the postcentral gyrus contains the primary somatosensory cortex or SI (Brodmann areas 3, 1, and 2), while the posterior parietal region is made up of the superior (Brodmann areas 5 and 7) and inferior parietal lobules (Brodmann areas 39 and 40), which are separated by the intraparietal sulcus (Fig. 1). Medial and underneath the parietal cortex, in the superior bank of the lateral sulcus, lies the parietal operculum, defined functionally as the secondary somatosensory cortex or SII.

PET and fMRI Imaging in Parietal Cortex (SI, SII, Inferior...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apkarian, A. V., Stea, R. A., Manglos, S. H., Szeverenyi, N. M., King, R. B., & Thomas, F. D. (1992). Persistent pain inhibits contralateral somatosensory cortical activity in humans. Neuroscience Letters, 140, 141–147.

    PubMed  CAS  Google Scholar 

  • Benuzzi, F., Lui, F., Duzzi, D., Nichelli, P. F., & Porro, C. A. (2008). Does it look painful or disgusting? Ask your parietal and cingulate cortex. Journal of Neuroscience, 28, 923–931.

    PubMed  CAS  Google Scholar 

  • Bernhardt, B. C., & Singer, T. (2012). The neural basis of empathy. Annual Review of Neuroscience, 35, 1–23.

    PubMed  CAS  Google Scholar 

  • Burton, H., Sathian, K., & Dian-hua, S. (1990). Altered responses to cutaneous stimuli in the second somatosensory cortex following lesions of the postcentral gyrus in infant and juvenile macaques. The Journal of Comparative Neurology, 291, 395–414.

    PubMed  CAS  Google Scholar 

  • Bushnell, M. C., Duncan, G. H., Hofbauer, R. K., et al. (1999). Pain perception: Is there a role for primary somatosensory cortex? Proceedings of the National Academy of Sciences of the United States of America, 96, 7705–7709.

    PubMed  CAS  Google Scholar 

  • Chen, J. I., Ha, B., Bushnell, M. C., et al. (2002). Differentiating noxious- and innocuous-related activation of human somatosensory cortices using temporal analysis of fMRI. Journal of Neurophysiology, 88, 464–474.

    PubMed  Google Scholar 

  • Coghill, R. C., Gilron, I., & Iadarola, M. J. (2001). Hemispheric lateralization of somatosensory processing. Journal of Neurophysiology, 85, 2602–2612.

    PubMed  CAS  Google Scholar 

  • Coghill, R. C., McHaffie, J. G., & Yen, Y. F. (2003). Neural correlates of interindividual differences in the subjective experience of pain. Proceedings of the National Academy of Sciences of the United States of America, 100, 8538–8542.

    PubMed  CAS  Google Scholar 

  • Downar, J., Mikulis, D. J., & Davis, K. D. (2003). Neural correlates of the prolonged salience of painful stimulation. NeuroImage, 20, 1540–1551.

    PubMed  Google Scholar 

  • Duffy, F. H., & Burchfiel, J. L. (1971). Somatosensory system: Organizational hierarchy from single units in monkey area 5. Science, 172, 273–275.

    PubMed  CAS  Google Scholar 

  • Duquette, M., Rainville, P., Alary, F., Lassonde, M., & Lepore, F. (2008). Ipsilateral cortical representation of tactile and painful information in acallosal and callosotomized subjects. Neuropsychologia, 46, 2274–2279.

    PubMed  Google Scholar 

  • Fabri, M., Polonara, G., Quattrini, A., & Salvolini, U. (2002). Mechanical noxious stimuli cause bilateral activation of parietal operculum in callosotomized subjects. Cerebral Cortex, 12, 446–451.

    PubMed  CAS  Google Scholar 

  • Fabri, M., Del Pesce, M., Paggi, A., Polonara, G., Bartolini, M., Salvolini, U., & Manzoni, T. (2005). Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Brain Research. Cognitive Brain Research, 24, 73–80.

    PubMed  Google Scholar 

  • Garraghty, P. E., Pons, T. P., & Kaas, J. H. (1990). Ablations of areas 3b (SI proper) and 3a of somatosensory cortex in marmosets deactivate the second and parietal ventral somatosensory areas. Somatosensory & Motor Research, 7, 125–135.

    CAS  Google Scholar 

  • Giesecke, T., Gracely, R. H., Grant, M. A., et al. (2004). Evidence of augmented central pain processing in idiopathic chronic low back pain. Arthritis and Rheumatism, 50, 613–623.

    PubMed  Google Scholar 

  • Gracely, R. H., et al. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis and Rheumatism, 46, 1333–1343.

    PubMed  Google Scholar 

  • Greenspan, J. D., & Winfield, J. A. (1992). Reversible pain and tactile deficits associated with a cerebral tumor compressing the posterior insula and parietal operculum. Pain, 50, 29–39.

    PubMed  CAS  Google Scholar 

  • Greenspan, J. D., Lee, R. R., & Lenz, F. A. (1999). Pain sensitivity alterations as a function of lesion location in the parasylvian cortex. Pain, 81, 273–282.

    PubMed  CAS  Google Scholar 

  • Hofbauer, R. K., Rainville, P., Duncan, G. H., et al. (2001). Cortical representation of the sensory dimension of pain. Journal of Neurophysiology, 86, 402–411.

    PubMed  CAS  Google Scholar 

  • Hu, L., Zhang, Z. G., & Hu, Y. (2012). A time-varying source connectivity approach to reveal human somatosensory information processing. NeuroImage, 62, 217–228.

    PubMed  CAS  Google Scholar 

  • Iadarola, M. J., Berman, K. F., Zeffiro, T. A., et al. (1998). Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain, 121, 931–947.

    PubMed  Google Scholar 

  • Inui, K., Wang, X., Tamura, Y., Kaneoke, Y., & Kakigi, R. (2004). Serial processing in the human somatosensory system. Cerebral Cortex, 14, 851–857.

    PubMed  Google Scholar 

  • Iwamura, Y. (1998). Hierarchical somatosensory processing. Current Opinion in Neurobiology, 8, 522–528.

    PubMed  CAS  Google Scholar 

  • Iwamura, Y., Iriki, A., & Tanaka, M. (1994). Bilateral hand representation in the postcentral somatosensory cortex. Nature, 369, 554–556.

    PubMed  CAS  Google Scholar 

  • Jackson, P. L., Meltzoff, A. N., & Decety, J. (2005). How do we perceive the pain of others? A window into the neural processes involved in empathy. NeuroImage, 24, 771–779.

    PubMed  Google Scholar 

  • Jones, A. K., Brown, W. D., Friston, K. J., Qi, L. Y., & Frackowiak, R. S. (1991). Cortical and subcortical localization of response to pain in man using positron emission tomography. Proceedings of the Royal Society B: Biological Sciences, 244, 39–44.

    PubMed  CAS  Google Scholar 

  • Kakigi, R., Hoshiyama, M., Shimojo, M., Naka, D., Yamasaki, H., Watanabe, S., et al. (2000). The somatosensory evoked magnetic fields. Progress in Neurobiology, 61, 495–523.

    PubMed  CAS  Google Scholar 

  • Kitamura, Y., Kakigi, R., Hoshiyama, M., Koyama, S., Watanabe, S., & Shimojo, M. (1997). Pain-related somatosensory evoked magnetic fields following lower limb stimulation. Journal of the Neurological Sciences, 145, 187–194.

    PubMed  CAS  Google Scholar 

  • Lamm, C., Decety, J., & Singer, T. (2011). Meta-analytic evidence for common and distinct neural networks associated with directly experienced pain and empathy for pain. NeuroImage, 54, 2492–2502.

    PubMed  Google Scholar 

  • Lanz, S., Seifert, F., & Maihofner, C. (2011). Brain activity associated with pain, hyperalgesia and allodynia: An ALE meta-analysis. Journal of Neural Transmission, 118, 1139–1154.

    PubMed  Google Scholar 

  • Legrain, V., et al. (2011). The pain matrix reloaded: A salience detection system for the body. Progress in Neurobiology, 93, 111–124.

    PubMed  Google Scholar 

  • Liang, M., Mouraux, A., & Iannetti, G. D. (2011). Parallel processing of nociceptive and non-nociceptive somatosensory information in the human primary and secondary somatosensory cortices: evidence from dynamic causal modeling of functional magnetic resonance imaging data. Journal of Neuroscience, 31(24), 8976–8985.

    Google Scholar 

  • Maihöfner, C., Schmelz, M., Forster, C., et al. (2004). Neural activation during experimental allodynia: A functional magnetic resonance imaging study. European Journal of Neuroscience, 19, 3211–3218.

    PubMed  Google Scholar 

  • Mouraux, A., et al. (2011). A multisensory investigation of the functional significance of the “pain matrix”. NeuroImage, 54, 2237–2249.

    PubMed  Google Scholar 

  • Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., & Coghill, R. C. (2007). Brain mechanisms supporting spatial discrimination of pain. Journal of Neuroscience, 27, 3388–3394.

    PubMed  CAS  Google Scholar 

  • Oshiro, Y., Quevedo, A. S., McHaffie, J. G., Kraft, R. A., & Coghill, R. C. (2009). Brain mechanisms supporting discrimination of sensory features of pain: A new model. Journal of Neuroscience, 29, 14924–14931.

    PubMed  CAS  Google Scholar 

  • Ploner, M., Freund, H. J., & Schnitzler, A. (1999). Pain affect without pain sensation in a patient with a postcentral lesion. Pain, 81, 211–214.

    PubMed  CAS  Google Scholar 

  • Ploner, M., Schoffelen, J. M., Schnitzler, A., & Gross, J. (2009). Functional integration within the human pain system as revealed by granger causality. Human Brain Mapping, 30, 4025–4032.

    PubMed  Google Scholar 

  • Pons, T. P., Garraghty, P. E., & Mishkin, M. (1992). Serial and parallel processing of tactual information in somatosensory cortex of rhesus monkeys. Journal of Neurophysiology, 68, 518–527.

    PubMed  CAS  Google Scholar 

  • Potagas, C., Avdelidis, D., Singounas, E., Missir, O., & Aessopos, A. (1997). Episodic pain associated with a tumor in the parietal operculum: A case report and literature review. Pain, 72, 201–208.

    PubMed  CAS  Google Scholar 

  • Rainville, P., Duncan, G. H., Price, D. D., et al. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277, 968–971.

    PubMed  CAS  Google Scholar 

  • Rainville, P., Carrier, B., Hofbauer, R. K., Bushnell, M. C., & Duncan, G. H. (1999). Dissociation of sensory and affective dimensions of pain using hypnotic modulation. Pain, 82, 159–171.

    PubMed  CAS  Google Scholar 

  • Singer, T., Seymour, B., O’Doherty, J., et al. (2004). Empathy for pain involves the affective but not sensory components of pain. Science, 303, 1157–1162.

    PubMed  CAS  Google Scholar 

  • Strigo, I. A., Duncan, G. H., Boivin, M., & Bushnell, M. C. (2003). Differentiation of visceral and cutaneous pain in the human brain. Journal of Neurophysiology, 89, 3294–3303.

    PubMed  Google Scholar 

  • Symonds, L. L., et al. (2006). Right-lateralized pain processing in the human cortex: An FMRI study. Journal of Neurophysiology, 95, 3823–3830.

    PubMed  Google Scholar 

  • Talbot, J. D., Marrett, S., Evans, A. C., et al. (1991). Multiple representations of pain in human cerebral cortex. Science, 251, 1355–1358.

    PubMed  CAS  Google Scholar 

  • Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., & Schnitzler, A. (2001). Differential coding of pain intensity in the human primary and secondary somatosensory cortex. Journal of Neurophysiology, 86, 1499–1503.

    PubMed  CAS  Google Scholar 

  • Valentini, E. (2010). The role of anterior insula and anterior cingulate in empathy for pain. Journal of Neurophysiology, 104, 584–586.

    PubMed  Google Scholar 

  • Verne, G. N., Himes, N. C., Robinson, M. E., et al. (2003). Central representation of visceral and cutaneous hypersensitivity in the irritable bowel syndrome. Pain, 103, 99–110.

    PubMed  Google Scholar 

  • Willoch, F., Schindler, F., Wester, H. J., et al. (2004). Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: A [11C]diprenorphine PET study. Pain, 108, 213–220.

    PubMed  CAS  Google Scholar 

  • Zaki, J., Ochsner, K. N., Hanelin, J., Wager, T. D., & Mackey, S. C. (2007). Different circuits for different pain: Patterns of functional connectivity reveal distinct networks for processing pain in self and others. Social Neuroscience, 2, 276–291.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary H. Duncan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Duncan, G.H., Albanese, MC., Khoshnejad, M. (2013). PET and fMRI Imaging in Parietal Cortex (SI, SII, Inferior Parietal Cortex BA40). In: Gebhart, G.F., Schmidt, R.F. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28753-4_3308

Download citation

Publish with us

Policies and ethics