Skip to main content

Human Thalamic Response to Experimental Pain (Neuroimaging)

  • Reference work entry
Encyclopedia of Pain

Synonyms

Thalamic response to experimental pain in humans

Definition

The thalamus is the major relay structure in the forebrain for noxious and non-noxious sensory inputs. In the case of noxious stimuli, the thalamus distributes the incoming information to other specific cortical areas for proper processing of their discriminative, cognitive, and affective components. Recent neuroimaging techniques can effectively detect transient thalamic neuronal activation following the application of experimental stimuli that artificially replicate painful conditions in humans.

Characteristics

Thalamic neuronal activation is frequently observed in functional neuroimaging studies following experimental pain. Through the use of neuroimaging techniques, the role of the thalamus has been gradually dissected in the nociceptive CNS network. Under those studies, experimental pain resultant of different noxious stimuli has revealed a pattern of thalamic activation that depends on the type of stimuli...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bantick, S. J., Wise, R. G., Ploghaus, A., et al. (2002). Imaging how attention modulates pain in humans using functional MRI. Brain, 125, 310–319.

    PubMed  Google Scholar 

  • Casey, K. L., Svensson, P., Morrow, T. J., et al. (2000). Selective opiate modulation of nociceptive processing in the human brain. Journal of Neurophysiology, 84, 525–533.

    PubMed  CAS  Google Scholar 

  • Craig, A. D. (2002). How do you feel? Interoception: The sense of the physiological condition of the body. Nature Reviews. Neuroscience, 3, 655–666.

    PubMed  CAS  Google Scholar 

  • Creac’h, C., Henry, P., Caille, J. M., et al. (2000). Functional MR imaging analysis of pain-related brain activation after acute mechanical stimulation. AJNR. American Journal of Neuroradiology, 21, 1402–1406.

    PubMed  Google Scholar 

  • DaSilva, A. F., Becerra, L., Makris, N., et al. (2002). Somatotopic activation in the human trigeminal pain pathway. The Journal of Neuroscience, 22, 8183–8192.

    PubMed  CAS  Google Scholar 

  • DaSilva, A. F., Tuch, D. S., Wiegell, M. R., et al. (2003). Diffusion tensor imaging – A primer on diffusion tensor imaging of anatomical substructure. Neurosurgical Focus, 15, 1–4.

    Google Scholar 

  • DaSilva, A. F., Volz, M. S., Bikson, M., & Fregni, F. (2011). Electrode positioning and montage in transcranial direct current stimulation. Journal of Visualized Experiments, 51, e2744.

    Google Scholar 

  • DaSilva, A. F., Mendonca, M. E., Zaghi, S., Lopes, M., Dos Santos, M. F., Spierings, E. L., et al. (2012). tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine. Headache, 52, 1283–1295. doi:10.1111/j.1526 4610.2012.02196.x. (see http://www.ncbi.nlm.nih.gov/pubmed/22512348).

  • Derbyshire, S. W., Jones, A. K., Collins, M., et al. (1999). Cerebral responses to pain in patients suffering acute post-dental extraction pain measured by positron emission tomography (PET). European Journal of Pain, 3, 103–113.

    PubMed  Google Scholar 

  • Di Piero, V., Fiacco, F., Tombari, D., et al. (1997). Tonic pain: A SPET study in normal subjects and cluster headache patients. Pain, 70, 185–191.

    PubMed  Google Scholar 

  • DosSantos, M. F., Love, T., Martikainen, I. K., Nascimento, T. D., Fregni, F., Cummiford, C. M., et al. (2012). Immediate effect of tDCS on the μ-opioid system of a chronic pain patient. Front Psychiatry, 3, 93.

    PubMed  Google Scholar 

  • Faymonville, M. E., Roediger, L., Del Fiore, G., et al. (2003). Increased cerebral functional connectivity underlying the antinociceptive effects of hypnosis. Brain Research. Cognitive Brain Research, 17, 255–262.

    PubMed  Google Scholar 

  • Garcia-Larrea, L., Brousolle, E., Cezanne-Bert, G., Maugiere, F., et al. (1997). P 300 and frontal executive functions: application of a dual-task paradigm in normal subjects and patients with Parkinson‘s disease and progressive supranuclear palsy. Electroencephalography and Clinical Neurophysiology, 103, 148.

    Google Scholar 

  • Garcia-Larrea, L., Peyron, R., Mertens, P., Gregoire, M. C., Lavenne, F., Le Bars, D., Convers, P., Mauguiere, F., Sindou, M., Laurent, B., et al. (1999). Electrical stimulation of motor cortex for pain control: a combined PET-scan and electrophysiological study. Pain, 83, 259–273.

    PubMed  CAS  Google Scholar 

  • Gracely, R. H., Petzke, F., Wolf, J. M., et al. (2002). Functional magnetic resonance imaging evidence of augmented pain processing in fibromyalgia. Arthritis and Rheumatism, 46, 1333–1343.

    PubMed  Google Scholar 

  • Hsieh, J. C., Belfrage, M., Stone-Elander, S., et al. (1995). Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain, 63, 225–236.

    PubMed  CAS  Google Scholar 

  • Iadarola, M. J., Berman, K. F., Zeffiro, T. A., et al. (1998). Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain, 121, 931–947.

    PubMed  Google Scholar 

  • Kwiatek, R., Barnden, L., Tedman, R., et al. (2000). Regional cerebral blood flow in fibromyalgia: Single-photon-emission computed tomography evidence of reduction in the pontine tegmentum and thalami. Arthritis and Rheumatism, 43, 2823–2833.

    PubMed  CAS  Google Scholar 

  • Lorenz, J., Minoshima, S., & Casey, K. L. (2003). Keeping pain out of mind: The role of the dorsolateral prefrontal cortex in pain modulation. Brain, 126, 1079–1091.

    PubMed  CAS  Google Scholar 

  • Paulson, P. E., Minoshima, S., Morrow, T. J., et al. (1998). Gender differences in pain perception and patterns of cerebral activation during noxious heat stimulation in humans. Pain, 76, 223–229.

    PubMed  CAS  Google Scholar 

  • Polania, R., Paulus, W., & Nitsche, M. A. (2012). Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Human Brain Mapping, 33(10), 2499–2508.

    PubMed  Google Scholar 

  • Strafella, A. P., Vanderwerf, Y., & Sadikot, A. F. (2004). Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of the subthalamic nucleus. European Journal of Neuroscience, 20, 2245–2249.

    PubMed  Google Scholar 

  • Svensson, P., Minoshima, S., Beydoun, A., et al. (1997). Cerebral processing of acute skin and muscle pain in humans. Journal of Neurophysiology, 78, 450–460.

    PubMed  CAS  Google Scholar 

  • Wiegell, M. R., Tuch, D. S., Larsson, H. B., et al. (2003). Automatic segmentation of thalamic nuclei from diffusion tensor magnetic resonance imaging. NeuroImage, 19, 391–401.

    PubMed  Google Scholar 

  • Zubieta, J. K., Smith, Y. R., Bueller, J. A., et al. (2002). mu-Opioid receptor-mediated antinociceptive responses differ in men and women. The Journal of Neuroscience, 22, 5100–5107.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre F. M. DaSilva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

DaSilva, A.F.M., Hadjikhani, N. (2013). Human Thalamic Response to Experimental Pain (Neuroimaging). In: Gebhart, G.F., Schmidt, R.F. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28753-4_1792

Download citation

Publish with us

Policies and ethics