Skip to main content

Forebrain Modulation of the Periaqueductal Gray and Its Role in Pain

  • Reference work entry
Encyclopedia of Pain

Introduction

Forebrain Inputs to PAG

In the 1980s and 1990s, tract-tracing studies from a number of laboratories (e.g., Beitz 1982; Shipley et al. 1991) revealed an important feature of the PAG; afferent inputs to the PAG arise from a staggering number of cortical and subcortical forebrain sites. These inputs to the PAG are much heavier than previously suspected and terminate with a remarkable degree of topographic specificity. Major identified forebrain afferents to the PAG include the medial prefrontal cortex (MPF), the medial preoptic area (MPO), the central and medial nuclei of the amygdala (CeA, MeA), the ventromedial hypothalamus (VMH), and the paraventricular nucleus of the hypothalamus (PVN).

Definition

The midbrain periaqueductal gray (PAG) and its descending projections to the rostral ventromedial medulla (RVM) comprise a critical descending neuroanatomical pathway modulating pain and analgesia. The PAG projects heavily and directly to the RVM, which in turn projects to the do...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,799.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beitz, A. J. (1982). The organization of afferent projections to the periaqueductal gray of the rat. Neuroscience, 7, 133–159.

    PubMed  CAS  Google Scholar 

  • Burkey, A. R., Carstens, E., Wenniger, J. J., et al. (1996). An opioidergic cortical antinociception triggering site in the agranular insular cortex of the rat contributes to morphine antinociception. The Journal of Neuroscience, 16, 6612–6623.

    PubMed  CAS  Google Scholar 

  • Floyd, N. S., Price, J. L., Ferry, A. T., et al. (2000). Orbitomedial prefrontal cortical projections to distinct longitudinal columns of the periaqueductal gray in the rat. The Journal of Comparative Neurology, 422, 556–578.

    PubMed  CAS  Google Scholar 

  • Helmstetter, F. J., & Tershner, S. A. (1994). Lesions of the periaqueductal gray and rostral ventromedial medulla disrupt antinociceptive but not cardiovascular aversive conditional responses. The Journal of Neuroscience, 14, 3099–7108.

    Google Scholar 

  • Loyd, D. R., & Murphy, A. Z. (2006). Sex differences in the anatomical and functional organization of the periaqueductal gray-rostral ventromedial medullary pathway in the rat: A potential circuit mediating the sexually dimorphic actions of morphine. The Journal of Comparative Neurology, 496, 723–738.

    PubMed  Google Scholar 

  • Loyd, D. R., & Murphy, A. Z. (2008). Androgen and estrogen (α) receptor localization on periaqueductal gray neurons projecting to the rostral ventromedial medulla in the male and female rat. Journal of Chemical Neuroanatomy, 36, 216–226.

    PubMed  CAS  Google Scholar 

  • Loyd, D. R., & Murphy, A. Z. (2009). The role of the periaqueductal gray in the modulation of pain in males and females: are the anatomy and physiology really that different? Neural Plast. doi: 10.1155/2009/462879.

    PubMed  Google Scholar 

  • Loyd, D. R., Wang, X., & Murphy, A. Z. (2008). Sex differences in mu opioid receptor expression in the rat midbrain periaqueductal gray are essential for eliciting sex differences in morphine analgesia. The Journal of Neuroscience, 28(52), 14007–14017.

    PubMed  CAS  Google Scholar 

  • Manning, B. H., & Mayer, D. J. (1995). The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail flick test. The Journal of Neuroscience, 15, 8199–8213.

    PubMed  CAS  Google Scholar 

  • Murphy, A. Z., Ennis, M., Shipley, M. T., & Behbehani, M. M. (1994). Directionally specific changes in arterial pressure induce differential patterns of fos expression in discrete areas of the rat brainstem: a double-labeling study for Fos and catecholamines. The Journal of Comparative Neurology, 349(1), 36–50.

    PubMed  CAS  Google Scholar 

  • Murphy, A. Z., Rizvi, T. A., Ennis, M., et al. (1999). The organization of preoptic-medullary circuits in the male rat: Evidence for interconnectivity of neural structures involved in reproductive behavior, antinociception and cardiovascular regulation. Neuroscience, 91, 1103–1116.

    PubMed  CAS  Google Scholar 

  • Murphy, A. Z., & Hoffman, G. E. (2001). Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. The Journal of Comparative Neurology, 438(2), 191–212.

    PubMed  CAS  Google Scholar 

  • Normandin, J. J., & Murphy, A. Z. (2008). Nucleus paragigantocellularis afferents in male and female rats: organization, gonadal steroid receptor expression, and activation during sexual behavior. The Journal of Comparative Neurology, 508(5), 771–794.

    PubMed  Google Scholar 

  • Oliveira, M. A., & Prado, W. A. (2001). Role of the PAG in the antinociception evoked from the medial or central amygdala in rats. Brain Research Bulletin, 54, 55–63.

    PubMed  CAS  Google Scholar 

  • Petrovic, P., Kalso, E., Petersson, K. M., et al. (2002). Placebo and opioid analgesia-imaging a shared neuronal network. Science, 295, 1737–1740.

    PubMed  CAS  Google Scholar 

  • Price, D. D. (2000). Psychological and neural mechanisms of the affective dimension of pain. Science, 288, 1769–1772.

    PubMed  CAS  Google Scholar 

  • Rizvi, T. A., Ennis, M., Murphy, A. Z., et al. (1996). Medial preoptic afferents to periaqueductal gray medullo-output neurons: A combined Fos and tract tracing study. The Journal of Neuroscience, 16, 333–344.

    PubMed  CAS  Google Scholar 

  • Rolls, E. T., O’Doherty, J., Kringelbach, M. L., et al. (2003). Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cerebral Cortex, 13, 308–317.

    PubMed  CAS  Google Scholar 

  • Shipley, M. T., Ennis, M., Rizvi, T. A., et al. (1991). Topographical specificity of forebrain inputs to the midbrain periaqueductal gray: Evidence for discrete longitudinally organized input columns. In A. Depaulis & R. Bandler (Eds.), The midbrain periaqueductal gray matter (pp. 417–448). New York: Plenum Press.

    Google Scholar 

  • Zhang, Y. H., & Ennis, M. (2007). Inactivation of the periaqueductal gray attenuates antinociception elicited by stimulation of the rat medial preoptic area. Neurosci Lett. 429(2–3), 105–110.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to recognize the contributions of Dr. Matthew Ennis and Xijing Zhang on the first edition of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayna R. Loyd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Loyd, D.R., Murphy, A.Z. (2013). Forebrain Modulation of the Periaqueductal Gray and Its Role in Pain. In: Gebhart, G.F., Schmidt, R.F. (eds) Encyclopedia of Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28753-4_1534

Download citation

Publish with us

Policies and ethics