Skip to main content

Metasomatism Within the Ocean Crust

  • Chapter
  • First Online:
Metasomatism and the Chemical Transformation of Rock

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

From ridge to trench, the ocean crust undergoes extensive chemical exchange with seawater, which is critical in setting the chemical and isotopic composition of the oceans and their rocky foundation. Although the overall exchange fluxes are great, the first-order metasomatic changes of crustal rocks are generally minor (usually <10% relative change in major element concentrations). Drastic fluid-induced metasomatic mass transfers are limited to areas of very high fluid flux such as hydrothermal upflow zones. Epidotization, chloritization, and serizitization are common in these upflow zones, and they often feature replacive sulfide mineralization, forming significant metal accumulations below hydrothermal vent areas. Diffusional metasomatism is subordinate in layered (gabbroic-doleritic-basaltic) crust, because the chemical potential differences between the different lithologies are minor. In heterogeneous crust (mixed mafic-ultramafic lithologies), however, diffusional mass transfers between basaltic lithologies and peridotite are very common. These processes include rodingitization of gabbroic dikes in the lithospheric mantle and steatitization of serpentinites in contact to gabbroic intrusions. Drivers of these metasomatic changes are strong across-contact differences in the activities of major solutes in the intergranular fluids. Most of these processes take place under greenschist-facies conditions, where the differences in silica and proton activities in the fluids are most pronounced. Simple geochemical reaction path models provide a powerful tool for investigating these processes. Because the oceanic crust is hydrologically active throughout much of its lifetime, the diffusional metasomatic zones are commonly also affected by fluid flow, so that a clear distinction between fluid-induced and lithology-driven metasomatism is not always possible. Heterogeneous crust is common along slow and ultraslow spreading ridges, were much of the extension is accommodated by faulting (normal faults and detachment faults). Mafic-ultramafic contacts hydrate to greater extents and at higher temperatures than uniform mafic or ultramafic masses of rock. Hence, these lithologic contacts turn mechanically weak at great lithopheric depth and are prone to capture much of the strain during exhumation and uplift of oceanic core complexes. Metasomatism therefore plays a critical role in setting rheological properties of oceanic lithosphere along slow oceanic spreading centers, which – by length – comprise half of the global mid-ocean ridge system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrajano TA, Sturchio NC, Bohlke JK, Lyon GL, Poreda RJ, Stevens CM (1988) Methane-hydrogen gas seeps, Zambales Ophiolite, Philippines: deep or shallow origin? Chem Geol 71(1–3):211–222

    Article  Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems, Geophysical monograph. American Geophysical Union, Washington, DC, pp 85–114

    Google Scholar 

  • Alt JC, Teagle DAH (1998) Probing the TAG hydrothermal mound and stockwork: oxygen-isotopic profiles from deep ocean drilling. In: Humphris SE, Herzig PM, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 285–295

    Google Scholar 

  • Alt JC, Teagle DAH (1999) The uptake of carbon during alteration of ocean crust. Geochim Cosmochim Acta 63:1527–1535

    Article  Google Scholar 

  • Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal alteration of a 1 km section through the upper oceanic crust. DSDP Hole 504B: mineralogy, chemistry and evolution of seawater-basalt interactions. J Geophys Res 91:309–335

    Article  Google Scholar 

  • Alt JC, Laverne C, Vanko D, Tartarotti P, Teagle DAH, Bach W, Zuleger E, Erzinger J, Honnorez J (1996a) Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: a synthesis of results from DSDP/ODP Legs 69, 70, 83, 111, 137, 140, and 148 at Site 504B. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the ocean drilling program, scientific results, vol 148. Ocean drilling program, College Station, pp 417–434

    Google Scholar 

  • Alt JC, Teagle DAH, Laverne C, Vanko D, Bach W, Honnorez J, Becker K (1996b) Ridge flank alteration of upper oceanic crust in the eastern Pacific: a synthesis of results for volcanic rocks of Holes 504B and 896A. In: Alt JC, Kinoshita H, Stokking LB, Michael PJ (eds) Proceedings of the ocean drilling program, scientific results, vol 148. Ocean drilling program, College Station, pp 435–450

    Google Scholar 

  • Alt JC, Shanks WC, Bach W, Paulick H, Garrido CJ, Beaudoin G (2007) Hydrothermal alteration and microbial sulfate reduction in peridotite and gabbro exposed by detachment faulting at the Mid-Atlantic Ridge, 15°20′N (ODP Leg 209): a sulfur and oxygen isotope study. Geochem Geophys Geosyst 8(8):Q08002. doi:08010.01029/02007GC001617

    Article  Google Scholar 

  • Andreani M, Luquot L, Gouze P, Godard M, Hoise E, Gibert B (2009) Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites. Environ Sci Technol 43(4):1226–1231

    Article  Google Scholar 

  • Anonymous (1972) Penrose field conference on ophiolites. Geotimes 17:24–25

    Google Scholar 

  • Aumento F (1971) Uranium content of mid-ocean ridge basalts. Earth Planet Sci Lett 11:90–94

    Article  Google Scholar 

  • Aumento F, Loubat H (1971) The Mid-Atlantic Ridge near 45 °N. XVI. Serpentinized ultramafic intrusions. Can J Earth Sci 8(6):631–663

    Article  Google Scholar 

  • Austrheim H, Prestvik T (2008) Rodingitization and hydration of the oceanic lithosphere as developed in the Leka ophiolite, north-central Norway. Lithos 104(1–4):177–198

    Article  Google Scholar 

  • Austrheim H, Putnis CV, Engvik AK, Putnis A (2008) Zircon coronas around Fe-Ti oxides: a physical reference frame for metamorphic and metasomatic reactions. Contrib Mineral Petrol 156:517–527

    Article  Google Scholar 

  • Bach W, Klein F (2009) The petrology of seafloor rodingites: insights from geochemical reaction path modeling. Lithos 112(1–2):103–117

    Article  Google Scholar 

  • Bach W, Alt JC, Niu Y, Humphris SE, Erzinger J, Dick HJB (2001) The geochemical consequences of late-stage low-grade alteration of lower ocean crust at the SW Indian Ridge: results from ODP Hole 735B (Leg 176). Geochim Cosmochim Acta 65:3267–3287

    Article  Google Scholar 

  • Bach W, Peucker-Ehrenbrink B, Hart SR, Blusztajn JS (2003) Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B – Implications for seawater-crust exchange budgets and Sr- and Pb-isotopic evolution of the mantle. Geochem Geophys Geosyst 4(3). doi:10.1029/2002GC000419

  • Bach W, Garrido CJ, Harvey J, Paulick H, Rosner M (2004) Seawater-peridotite interactions – first insights from ODP Leg 209, MAR 15ºN. Geochem Geophys Geosyst 5(9):Q09F26. doi:10.1029/2004GC000744

    Article  Google Scholar 

  • Baker ET, Chen YJ, Phipps Morgan JP (1996) The relationship between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges. Earth Planet Sci Lett 142:137–145

    Article  Google Scholar 

  • Baker ET, Embley RW, Walker SL, Resing JA, Lupton JE, Nakamura K, de Ronde CEJ, Massoth GJ (2008) Hydrothermal activity and volcano distribution along the Mariana arc. J Geophys Res 113:B08S09. doi:10.1029/2007JB005423

    Article  Google Scholar 

  • Banerjee NR, Gillis KM, Muehlenbachs K (2000) Discovery of epidosites in a modern oceanic setting, the Tonga forearc. Geology 28(2):151–154

    Article  Google Scholar 

  • Barnes I, O’Neil JR (1969) The relationship between fluids in some fresh alpine-type ultramafics and possible modern serpentinization, Western United States. Geol Soc Am Bull 80:1948–1960

    Article  Google Scholar 

  • Barnes I, Lamarche VC, Himmelberg G (1967) Geochemical evidence of present-day serpentinization. Science 156:830–832

    Article  Google Scholar 

  • Barriga FJAS, Fyfe WS (1983) Development of rodingite in basaltic rocks in serpentinites, East Liguria, Italy. Contrib Mineral Petrol 84:146–151

    Article  Google Scholar 

  • Beard JS, Fullagar PD, Sinha AK (2002) Gabbroic pegmatite intrusions, Iberia Abyssal Plain, ODP Leg 173, Site 1070: magmatism during a transition from non-volcanic rifting to sea-floor spreading. J Petrol 43(5):885–905

    Article  Google Scholar 

  • Bickle MJ, Teagle DAH (1992) Strontium alteration in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean ridge hydrothermal systems. Earth Planet Sci Lett 113:219–237

    Article  Google Scholar 

  • Bideau D, Hebert R, Hekinian R, Cannat M (1991) Metamorphism of deep-seated rocks from the Garrett Ultrafast transform (East Pacific rise near 13°25′S). J Geophys Res 96:10079–10099. doi:10.1029/91JB00243

    Article  Google Scholar 

  • Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4(3):1027. doi:1010.1029/2001GC000252

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1985) An empirical equation of state for hydrothermal seawater (3.2 percent NaCl). Am J Sci 285:725–763

    Article  Google Scholar 

  • Bischoff JL, Rosenbauer RJ (1996) The alteration of rhyolite in CO2 charged water at 200°C and 350°C: the unreactivity of CO2 at higher temperature. Geochim Cosmochim Acta 60(20):3859–3867

    Article  Google Scholar 

  • Blackman DK, Canales P, Harding A (2009) Geophysical signatures of oceanic core complexes. Geophys J Int 178:593–613

    Article  Google Scholar 

  • Bogdanov YA, Bortnikov NS, Vikentyev IV, Gurvich EG, Sagalevich AM (1997) A new type of modern mineral-forming system: black smokers of the hydrothermal field at 14°45′N latitude, Mid-Atlantic Ridge. Geol Ore Deposit 39(1):58–78

    Google Scholar 

  • Böhlke JK (1989) Comparison of metasomatic reactions between a common CO2-rich vein fluid and diverse wall rocks; intensive variables, mass transfers, and Au mineralization at Alleghany, California. Econ Geol 84(2):291–327

    Article  Google Scholar 

  • Boschi C, Früh-Green GL, Escartin J (2006a) Occurrence and significance of serpentinite-hosted talc- and amphibole-rich fault rocks in modern oceanic settings and ophiolite complexes; an overview. Ofioliti 31(2):129–140

    Google Scholar 

  • Boschi C, Früh-Green GL, Delacour A, Karson JA, Kelley DS (2006b) Mass transfer and fluid flow during detachment faulting and development of an oceanic core complex Atlantis Massif (MAR 30°N). Geochem Geophys Geosyst 7:Q01004. doi:10.1029/2005GC001074

    Article  Google Scholar 

  • Bowers TS, Taylor HP Jr (1985) An integrated chemical and stable-isotope model of the origin of midocean ridge hot spring systems. J Geophys Res 90, 12583–12606. doi:10.1029/JB090iB14p12583

    Google Scholar 

  • Cann JR (1969) Spilites from the Carlsberg Ridge, Indian Ocean. J Petrol 10:1–19

    Article  Google Scholar 

  • Cannat M, Mével C, Maia M, Deplus C, Durand C, Gente P, Agrinier P, Belarouchi A, Dubuisson G, Humler E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23:49–52

    Article  Google Scholar 

  • Charlou J-L, Donval J-P, Fouquet Y, Jean-Baptiste P, Holm N (2002) Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36º14′N, MAR). Chem Geol 191:345–359

    Article  Google Scholar 

  • Cheminee J-L, Stoffers P, McMurtry G, Richnow H, Puteanus D, Sedwick P (1991) Gas-rich submarine exhalations during the 1989 eruption of Macdonald Seamount. Earth Planet Sci Lett 107:318–327

    Article  Google Scholar 

  • Chidester AH, Cady WM (1972) Origin and emplacement of Alpine-type ultramafic rocks. Nature 240:27–31

    Google Scholar 

  • Cogne J-P, Humler E (2004) Temporal variations of oceanic spreading and crustal production rates during the last 180 My. Earth Planet Sci Lett 227:427–439

    Article  Google Scholar 

  • Coleman RG (1967) Low-temperature reaction zones and alpine rocks of California, Oregon, and Washington, vol 1247, US Geoligal Survey Bulletin. U.S. Govt. Print. Off, Washington, DC

    Google Scholar 

  • Dabitzias SG (1980) Petrology and genesis of the Vavdos cryptocrystalline magnesite deposits, Chalkidiki Peninsula, northern Greece. Econ Geol 75(8):1138–1151

    Article  Google Scholar 

  • de Ronde CEJ, Baker ET, Massoth GJ, Lupton JE, Wright IC, Feely RA, Greene RR (2001) Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planet Sci Lett 193:359–369

    Article  Google Scholar 

  • Dias AS, Barriga F (2006) Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR. Mar Geol 225(1–4):157–175

    Article  Google Scholar 

  • Dick HJB, Natland JH, Alt JC, Bach W, Bideau D, Gee JS, Haggas S, Hertogen JGH, Hirth G, Holm PM, Ildefonse B, Iturrino GJ, John BE, Kelley DS, Kikawa E, Kingdon A, LeRoux PJ, Maeda J, Meyer PS, Miller DJ, Naslund HR, Niu Y, Robinson PT, Snow J, Stephen RA, Trimby PW, Worm H-U, Yoshinobu A (2000) A long in situ section of the lower ocean crust: results of ODP Leg 176 Drilling at the Southwest Indian Ridge. Earth Planet Sci Lett 179:31–51

    Article  Google Scholar 

  • Dick HJB, Lin J, Schouten H (2003) An ultraslow-spreading class of ocean ridge. Nature 426:405–412

    Article  Google Scholar 

  • Dick HJB, Tivey MA, Tucholke BE (2008) Plutonic foundation of a slow-spreading ridge segment: oceanic core complex at Kane Megamullion, 23°30′N, 45°20′W. Geochem Geophys Geosyst 9(5):Q05014. doi:05010.01029/02007GC001645

    Article  Google Scholar 

  • D’Orazio M, Boschi C, Brunelli D (2004) Talc-rich hydrothermal rocks from the St. Paul and Conrad fracture zones in the Atlantic Ocean. Eur J Mineral 16:73–83

    Article  Google Scholar 

  • Elderfield H, Schultz A (1996) Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci Lett 24:191–224

    Article  Google Scholar 

  • Elderfield H, Wheat CG, Mottl MJ, Monnin C, Spiro B (1999) Fluid and geochemical transport through oceanic crust: a transect across the eastern flank of the Juan de Fuca Ridge. Earth Planet Sci Lett 172:151–165

    Article  Google Scholar 

  • Escartín J, Hirth G, Evans B (2001) Strength of slightly serpentinized peridotites: implications for the tectonics of ocean lithosphere. Geology 29:1023–1026

    Article  Google Scholar 

  • Escartín J, Mevel C, MacLeod CJ, McCaig AM (2003) Constraints on deformation conditions and the origin of oceanic detachments: the Mid-Atlantic Ridge core complex at 15º45′N. Geochem Geophys Geosyst 4(8). doi:10.1029/2002GC000472

  • Escartín J, Andreani M, Hirth G, Evans B (2008) Relationship between the microstructural evolution and the rheology of talc at elevated pressures and temperatures. Earth Planet Sci Lett 268:463–475

    Article  Google Scholar 

  • Evans BW (1977) Metamorphisms of alpine peridotite and serpentinite. Annu Rev Earth Planet Sci 5:398–447

    Article  Google Scholar 

  • Feth JH, Rogers SM, Robertson E (1961) Aqua de Ney, California, a spring of unique chemical character. Geochim Cosmochim Acta 22:75–86

    Article  Google Scholar 

  • Frost BR (1975) Contact metamorphism of serpentinite, chloritic blackwall and rodingite at Paddy-Go-Easy Pass, central cascades, Washington. J Petrol 16:272–313

    Google Scholar 

  • Frost BR (1985) On the stability of sulfides, oxides and native metals in serpentinite. J Petrol 26:31–63

    Article  Google Scholar 

  • Frost BR, Beard JS (2007) On silica activity and serpentinization. J Petrol 48:1351–1368

    Article  Google Scholar 

  • Frost BR, Beard JS, McCaig A, Condliffe E (2008) The formation of micro-rodingites from IODP Hole U1309D: key to understanding the process of serpentinization. J Petrol 49:1579–1588

    Article  Google Scholar 

  • Gass IG, Smewing JD (1973) Intrusion, extrusion and metamorphism at constructive margins: evidence from the Troodos Massif, Cyprus. Nature 242:26–29

    Article  Google Scholar 

  • Gerdemann SJ, Dahlin DC, O’Connor WK, Penner LR (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In: Second annual conference on carbon sequestration, Alexandria, May 5–8, 2003. Report no. DOE/ARC-2003-018, OSTI ID: 898299 8 pp

    Google Scholar 

  • Gillis KM (1995) Controls on hydrothermal alteration in a section of fast-spreading oceanic crust. Earth Planet Sci Lett 134:473–489

    Article  Google Scholar 

  • Gillis KM (2002) The rootzone of an ancient hydrothermal system exposed in the Troodos ophiolite, Cyprus. J Geol 110:57–74

    Article  Google Scholar 

  • Graham D, Sarda P (1991) Mid-ocean ridge popping rocks – implications for degassing at ridge crests – comment. Earth Planet Sci Lett 105(4):568–573

    Article  Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Article  Google Scholar 

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Article  Google Scholar 

  • Halls C, Zhao R (1995) Listvenite and related rocks: perspectives on terminology and mineralogy with reference to an occurrence at Cregganbaun, Co. Mayo, Republic of Ireland. Miner Deposita 30(3):303–313

    Article  Google Scholar 

  • Hansen LD, Dipple GM, Gordon TM, Kellett DA (2005) Carbonated serpentinite (listwanite) at Atlin, British Columbia: a geological analogue to carbon dioxide sequestration. Can Mineral 43:225–239

    Article  Google Scholar 

  • Harper GD, Bowman JR, Kuhns R (1988) A field, chemical, and stable isotope study of subseafloor metamorphism of the Josephine ophiolite, California-Oregon. J Geophys Res 93:4625–4656

    Article  Google Scholar 

  • Hart RA (1970) Chemical exchange between seawater and deep ocean basalts. Earth Planet Sci Lett 9:269–279

    Article  Google Scholar 

  • Hart SR, Staudigel H (1982) The control of alkalies and uranium in seawater by ocean crust alteration. Earth Planet Sci Lett 58:202–212

    Article  Google Scholar 

  • Hatzipanagiotou K, Tsikouras B (2001) Rodingite formation from diorite in the Samothraki ophiolite, NE Aegean, Greece. Geol J 36(2):93–109

    Article  Google Scholar 

  • Hekinian R, Bideau D, Francheteau J, Cheminee JL, Armijo R, Lonsdale P, Blum N (1993) Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern equatorial Pacific). J Geophys Res 98:8069–8094

    Article  Google Scholar 

  • Hess HH (1933) The problem of serpentinization and the origin of certain chrysotile asbestos, talc, and soapstone deposits. Econ Geol 28(7):634–657

    Article  Google Scholar 

  • Honnorez J (2003) Hydrothermal alteration vs. ocean-floor metamorphism. A comparison between two case histories: the TAG hydrothermal mound (Mid-Atlantic Ridge) vs. DSDP/ODP Hole 504B (Equatorial East Pacific). Comptes Rendus Geosci 335:781–824

    Article  Google Scholar 

  • Honnorez J, Kirst P (1975) Petrology of rodingites from the equatorial Mid-Atlantic fracture zones and their geotectonic significance. Contrib Mineral Petrol 49:233–257

    Article  Google Scholar 

  • Humphris SE, Thompson G (1978) Hydrothermal alteration of oceanic basalts by seawater. Geochim Cosmochim Acta 42:107–125

    Article  Google Scholar 

  • Humphris SE, Herzig PM, Miller DJ, Alt JC (1995) The internal structure of an active sea-floor massive sulphide deposit. Nature 377:713–716

    Article  Google Scholar 

  • Humphris SE, Alt JC, Teagle DAH, Honnorez J (1998) Geochemical changes during hydrothermal alteration of basement in the stockwork beneath the active TAG hydrothermal mound. In: Humphris SE, Herzig PM, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean Drilling Program, College Station, pp 255–276

    Google Scholar 

  • Ildefonse B, Blackman DK, John BE, Ohara Y, Miller DJ, MacLeod CJ (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35(7):623–626

    Article  Google Scholar 

  • Iyer K, Austrheim H, John T, Jamtveit B (2008) Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka Ophiolite complex, Norway. Chem Geol 249(1–2):66–90

    Article  Google Scholar 

  • Janecky DR, Seyfried WE Jr (1986) Hydrothermal serpentinization of peridotite within the oceanic crust: experimental investigations of mineralogy and major element chemistry. Geochim Cosmochim Acta 50:1357–1378

    Article  Google Scholar 

  • Jarrard RD (2003) Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem Geophys Geosyst 4(5):8905. doi:8910.1029/2002GC000392

    Article  Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC (1991) SUPCRT92: a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 – 5000 bars and 0–1000°C. Comput Geosci 18:899–947

    Google Scholar 

  • Jöns N, Bach W, Schroeder T (2009) Formation and alteration of plagiogranites in an ultramafic-hosted detachment fault at the Mid-Atlantic Ridge (ODP Leg 209). Contrib Mineral Petrol 157(5):625–639

    Article  Google Scholar 

  • Jöns N, Bach W, Klein F (2010) Magmatic influence on reaction paths and element transport during serpentinization. Chem Geol 274(3–4):196–211

    Article  Google Scholar 

  • Kadko D, Barross J, Alt JC (1995) The magnitude and global implications of hydrothermal flux. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems, Geophysical monograph. American Geophysical Union, Washington, DC, pp 446–466

    Google Scholar 

  • Kelemen PB, Kikawa E, Miller DJ, Abe N, Bach W, Carlson RL, Casey JF, Chambers LM, Cheadle M, Cipriani A, Dick HJB, Faul U, Garces M, Garrido C, Gee JS, Godard MM, Graham DW, Griffin DW, Harvey J, Ildefonse B, Iturrino GJ, Josef J, Meurer WP, Paulick H, Rosner M, Schroeder T, Seyler M, Takazawa E (2004) Site 1275. In: Proceedings of the ocean drilling program; initial reports; drilling mantle peridotite along the Mid-Atlantic Ridge from 14 degrees to 16 degrees N; covering Leg 209 of the cruises of the drilling vessel JOIDES Resolution; Rio de Janeiro, Brazil, to St George, Bermuda; sites 1268–1275, 6 May-6 July 2003, vol Texas A&M University Ocean Drilling Program College Station, pp 167

    Google Scholar 

  • Kelley DS, Gillis KM, Thompson G (1993) Fluid evolution in submarine magma-hydrothermal systems at the Mid-Atlantic Ridge. J Geophys Res 98:19579–19596

    Article  Google Scholar 

  • Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P, Party A-S (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N. Nature 412:127–128

    Article  Google Scholar 

  • Kelley DS, Karson JA, Fruh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend ML, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP (2005) A serpentinite-hosted ecosystem: the lost city hydrothermal field. Science 307:1428–1434

    Article  Google Scholar 

  • Kimball KL, Spear FS, Dick HJB (1985) High temperature alteration of Abyssal ultramafics from the Islas Orcadas fracture zone, South Atlantic. Contrib Mineral Petrol 91:307–320

    Article  Google Scholar 

  • Klein EM (2004) Geochemistry of the igneous oceanic crust. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, vol 3. Elsevier, Amsterdam, pp 433–463

    Google Scholar 

  • Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126:147–160

    Article  Google Scholar 

  • Klein F, Bach W, Jöns N, McCollom T, Moskowitz B, Berquó T (2009) Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge. Geochim Cosmochim Acta 73(22):6868–6893

    Article  Google Scholar 

  • Knott R, Fouquet Y, Honnorez J, Petersen S, Bohn M (1998) Petrology of hydrothermal mineralization: a vertical section through the TAG mound. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 5–26

    Google Scholar 

  • Koons PO (1981) A study of natural and experimental metasomatic assemblages in an ultramafic-quartzofeldspathic metasomatic system from the Haast Schist, South Island, New Zealand. Contrib Mineral Petrol 78:189–195

    Article  Google Scholar 

  • Lecuyer C, Grurau G (1996) Oxygen and strontium isotope compositions of Hess Deep gabbros (Holes 894 F and 894 G): high-temperature interaction of seawater with ocean crust layer 3. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the ocean drilling program, scientific results, vol 147, Ocean drilling program, College Station, pp 227–234

    Google Scholar 

  • Lilley MD, Butterfield DA, Lupton JE, Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422:878–881

    Article  Google Scholar 

  • Ludden JN, Thompson G (1978) Behaviour of rare earth elements during submarine weathering of tholeiitic basalt. Nature 274:147–149

    Article  Google Scholar 

  • Mackenzie FT (1992) Chemical mass balance between rivers and oceans. In: Nierenberg WA (ed) Encyclopedia of earth system science, vol 1. Academic, New York, pp 431–445

    Google Scholar 

  • MacLeod CJ, Searle RC, Murton BJ, Casey JF, Mallows C, Unsworth SC, Achenbach KL, Harris M (2009) Life cycle of oceanic core complexes. Earth Planet Sci Lett 287(3–4):333–344

    Article  Google Scholar 

  • Malahoff A, McMurtry GM, Wiltshire JC, Yeh H-W (1982) Geology and chemistry of hydrothermal deposits from active submarine volcano Loihi, Hawaii. Nature 298:234–239

    Article  Google Scholar 

  • Manning CE, MacLeod CJ (1996) Fracture-controlled metamorphism of Hess Deep gabbros, Site 894: contraints on the roots of mid-ocean ridge hydrothermal systems at fast-spreading centers. In: Mevel C, Gillis KM, Allan JF, Meyer PS (eds) Proceedings of the ocean drilling program, scientific results, vol 147, Ocean drilling program, College Station, pp 189–212

    Google Scholar 

  • Manning CE, Weston PE, Mahon KI (1996) Rapid high-temperature metamorphism of East Pacific Rise gabbros from Hess Deep. Earth Planet Sci Lett 144:123–132

    Article  Google Scholar 

  • Matthews DH (1962) Altered lavas from the floor of the Eastern North Atlantic. Nature 194:368–369

    Article  Google Scholar 

  • McCaig AM, Cliff RA, Escartín J, Fallick AE, MacLeod CJ (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935–938

    Article  Google Scholar 

  • McCollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization. Geochim Cosmochim Acta 73:856–879

    Article  Google Scholar 

  • McCollom TM, Shock EL (1998) Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. J Geophys Res 103:547–575

    Article  Google Scholar 

  • Melson WG, Bowen VT, Van Andel T-H, Siever R (1966) Greenstones from the central valley of the Mid-Atlantic Ridge. Nature 209:604–605

    Article  Google Scholar 

  • Melson WG, Thompson G, Van Andel T-H (1968) Volcanism and metamorphism in the Mid-Atlantic ridge, 22°N latitude. J Geophys Res 73:5925–5941

    Article  Google Scholar 

  • Mével C (2003) Serpentinization of abyssal peridotite at mid-ocean ridges. Comptes Rendus Geosci 335:825–852

    Article  Google Scholar 

  • Mével C, Cannat M (1991) Lithospheric stretching and hydrothermal processes in oceanic gabbros from slow spreading ridges. In: Peters T, Nicolas A, Coleman RG (eds) Ophiolite genesis and the evolution of the oceanic lithosphere. Kluwer, Dordrecht, pp 293–312

    Chapter  Google Scholar 

  • Michael PJ, Langmuir CH, Dick HJB, Snow JE, Goldstein SL, Graham DW, Lehnert K, Kurras G, Jokat W, Muehe R, Edmonds HN (2003) Magmatic and amagmatic seafloor generation at the ultraslow-spreading Gakkel ridge, Arctic Ocean. Nature 423:956–961

    Article  Google Scholar 

  • Miyashiro A, Shido F, Ewing M (1971) Metamorphism in the Mid-Atlantic Ridge near 24° and 30°N. Philos Trans R Soc Lond A 268:589–603

    Article  Google Scholar 

  • Morishita T, Hara K, Nakamura K, Sawaguchi T, Tamura A, Arai S, Okino K, Takai K, Kumagai H (2009) Igneous, alteration and exhumation processes recorded in Abyssal peridotites and related fault rocks from an oceanic core complex along the central Indian ridge. J Petrol 50(7):1299–1325

    Article  Google Scholar 

  • Mottl MJ (1983) Metabasalts, axial hot springs, and the structure of hydrothermal systems at mid-ocean ridges. Geol Soc Am Bull 94:161–180

    Article  Google Scholar 

  • Mottl MJ, Wheat CG (1994) Hydrothermal circulation through mid-ocean ridge flanks: fluxes of heat and magnesium. Geochim Cosmochim Acta 58:2225–2237

    Article  Google Scholar 

  • Mottl MJ, Wheat G, Baker E, Becker N, Davis E, Feely R, Grehan A, Kadko D, Lilley M, Massoth G, Moyer C, Sansone F (1998) Warm springs discovered on 3.5 Ma oceanic crust, eastern flank of the Juan de Fuca Ridge. Geology 26:51–54

    Article  Google Scholar 

  • Mottl MJ, Komor SC, Fryer P, Moyer CL (2003) Deep-slab fluids fuel extremophilic Archaea on a Mariana forearc serpentinite mud volcano: ocean drilling program leg 195. Geochem Geophys Geosyst 4(11). doi:10.1029/2003GC000588

  • Mottl MJ, Wheat CG, Fryer P, Gharib J, Martin JB (2004) Chemistry of springs across the Mariana forearc shows progressive devolatilization of the subducting plate. Geochim Cosmochim Acta 68(23):4915–4933

    Article  Google Scholar 

  • Muehlenbachs K, Clayton RN (1972) Oxygen isotope geochemistry of submarine greenstones. Can J Earth Sci 9:471–478

    Article  Google Scholar 

  • Neal C, Stanger G (1983) Hydrogen generation from mantle source rocks in Oman. Earth Planet Sci Lett 66:315–320

    Article  Google Scholar 

  • Niu Y (2004) Bulk-rock major and trace element compositions of abyssal peridotites: implications for mantle melting, melt extraction and post-melting processes beneath mid-ocean ridges. J Petrol 45(12):2423–2458

    Article  Google Scholar 

  • Normand C, Williams-Jones AE (2007) Physicochemical conditions and timing of rodingite formation: evidence from rodingite-hosted fluid inclusions in the JM Asbestos mine, Asbestos, Quebec. GeochemTrans 25(8). doi:10.1186/1467-4866-1188-1111

  • Parsons B (1981) The rates of plate creation and consumption. Geophys J Roy Astr Soc 67:437–448

    Article  Google Scholar 

  • Pirajno F (2009) Hydrothermal processes and mineral systems. Springer, Dordrecht/London, p 1250

    Book  Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31:267–280

    Article  Google Scholar 

  • Quon SH, Ehlers EG (1963) Rocks of Northern part of Mid-Atlantic ridge. Geol Soc Am Bull 74:1–8

    Article  Google Scholar 

  • Ranero CR, Morgan JP, McIntosh K, Reichert C (2003) Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425:367–373

    Article  Google Scholar 

  • Read HH (1934) On zoned associations of antigorite, talc, actinolite, chlorite, and biotite in Unst, Shetland Islands. Mineral Mag 23:519–540

    Article  Google Scholar 

  • Richards HG, Cann JR, Jensenius J (1989) Mineralogical zonation and metasomatism of the alteration pipes of Cyprus sulfide deposits. Econ Geol 84:91–115

    Article  Google Scholar 

  • Richardson CJ, Cann JR, Richards HG, Cowan JG (1987) Metal-depleted root zones of the Troodos ore-forming hydrothermal systems, Cyprus. Earth Planet Sci Lett 84:243–253

    Article  Google Scholar 

  • Rose NM, Bird DK (1994) Hydrothermally altered dolerite dykes in East Greenland: implications for Ca-metasomatism of basaltic protoliths. Contrib Mineral Petrol 116:420–432

    Article  Google Scholar 

  • Saccocia PJ, Gillis KM (1995) Hydrothermal upflow zones in the oceanic crust. Earth Planet Sci Lett 136:1–16

    Article  Google Scholar 

  • Schmidt K, Koschinsky A, Garbe-Schönberg D, de Carvalho LM, Seifert R (2007) Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem Geol 242:1–21

    Article  Google Scholar 

  • Seewald JS, Cruse A, Saccocia PJ (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca ridge: temporal variability following earthquake activity. Earth Planet Sci Lett 216:575–590

    Article  Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1979) Low temperature basalt interaction with seawater: an experimental study at 70°C and 150°C. Geochim Cosmochim Acta 43:1937–1947

    Article  Google Scholar 

  • Seyfried WE Jr, Bischoff JL (1981) Experimental seawater-basalt interaction at 300°C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim Cosmochim Acta 45:135–147

    Article  Google Scholar 

  • Seyfried WE, Dibble WEJ (1980) Sea water – peridotite interaction at 300°C and 500 bars: implications for the origin of oceanic serpentinites. Geochim Cosmochim Acta 44:309–321

    Article  Google Scholar 

  • Seyfried WE Jr, Janecky DR, Mottl MJ (1984) Alteration of the oceanic crust: implications for geochemical cycles of lithium and boron. Geochim Cosmochim Acta 48:557–569

    Article  Google Scholar 

  • Seyfried WE Jr, Berndt ME, Seewald JS (1988) Hydrothermal alteration processes at mid ocean ridges: constraints from diabase alteration experiments, hot-spring fluids and composition of the oceanic crust. In: Barrett TJ, Jambor JL (eds) Seafloor hydrothermal mineralization, vol 26. Mineralogical Association of Canada, Toronto/Canada, pp 787–804

    Google Scholar 

  • Seyfried WE Jr, Foustoukos DI, Fu Q (2007) Redox evolution and mass transfer during serpentinization; an experimental and theoretical study at 200°C, 500 bar with implications for ultramafic-hosted hydrothermal systems at mid-ocean ridges. Geochim Cosmochim Acta 71(15):3872–3886

    Article  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216

    Article  Google Scholar 

  • Sleep NH (1991) Hydrothermal circulation, anhydrite precipitation, and thermal structure at ridge axes. J Geophys Res 96:2375–2387

    Article  Google Scholar 

  • Smith DK, Cann JR, Escartín J (2006) Widespread active detachment faulting and core complex formation near 13°N on the Mid-Atlantic Ridge. Nature 442:440–443

    Article  Google Scholar 

  • Snow JE, Dick HJB (1995) Pervasive magnesium loss by marine weathering of peridotite. Geochim Cosmochim Acta 59:4219–4235

    Article  Google Scholar 

  • Staudigel H, Hart SR, Richardson SH (1981) Alteration of the oceanic crust: processes and timing. Earth Planet Sci Lett 52:311–327

    Article  Google Scholar 

  • Staudigel H, Plank T, While B, Schmincke H-U (1996) Geochemical fluxes during seafloor alteration of the basaltic upper oceanic crust: DSDP Sites 417 and 418. In: Bebout GE, Scholl DW, Kirby SH, Platt JP (eds) Subduction top to bottom, vol 96, Geophysical monograph. American Geophysical Union, Washington, DC, pp 19–38

    Chapter  Google Scholar 

  • Stein CA, Stein S (1994) Constraints on hydrothermal heat flux through the oceanic lithosphere from global heat flow. J Geophys Res 99(B2):3081–3095

    Article  Google Scholar 

  • Stein CA, Stein S, Pelayo A (1995) Heat flow and hydrothermal circulation. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal processes, Geophysical monograph. American Geophysical Union, Washington, DC, pp 425–445

    Google Scholar 

  • Stern C, De Wit MJ, Lawrence JR (1976) Igneous and metamorphic processes associated with the formation of Chilean ophiolites and their implications for ocean floor metamorphism, seismic layering, and magnetism. J Geophys Res 81:4370–4380

    Article  Google Scholar 

  • Teagle DAH, Alt JC, Chiba H, Humphris SE, Halliday AN (1998a) Strontium and oxygen isotopic constraints on fluid mixing, alteration and mineralization in the TAG hydrothermal deposit. Chem Geol 149:1–24

    Article  Google Scholar 

  • Teagle DAH, Alt JC, Halliday AN (1998b) Tracing the chemical evolution of fluids during hydrothermal recharge: constraints from anhydrite recovered in ODP Hole 504B. Earth Planet Sci Lett 155:167–182

    Article  Google Scholar 

  • Thayer TP (1966) Serpentinization considered as a constant-volume metasomatic process. Am Mineral 51:685–710

    Google Scholar 

  • Thompson G (1991) Metamorphic and hydrothermal processes: basalt-seawater interactions. In: Floyd PA (ed) Oceanic basalts. Blackie, Glasgow/London, pp 148–173

    Chapter  Google Scholar 

  • Thompson G, Melson WG (1970) Boron contents of serpentinites and metabasalts in the oceanic crust: implications for the boron cycle in the oceans. Earth Planet Sci Lett 8:61–65

    Article  Google Scholar 

  • Tivey MK, Humphris SE, Thompson G, Hannington MD, Rona PA (1995) Deducing patterns of fluid flow and mixing within the active TAG mound using mineralogical and geochemical data. J Geophys Res 100:12527–12555. doi:10.1029/95JB00610

    Google Scholar 

  • Tivey MK, Mills RA, Teagle DAH (1998) Temperature and salinity of fluid inclusions in anhydrite as indicators of seawater entrainment and heating in the TAG active mound. In: Herzig PM, Humphris SE, Miller DJ, Zierenberg RA (eds) Proceedings of the ocean drilling program, scientific results, vol 158. Ocean drilling program, College Station, pp 179–190

    Google Scholar 

  • Tucholke BE, Lin J (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res 99(B6):11937–11958

    Article  Google Scholar 

  • Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res 103:9857–9866

    Article  Google Scholar 

  • Valsami E, Cann JR (1992) Mobility of rare earth elements in zones of intense hydrothermal alteration in the Pindos ophiolite, Greece. In: Parson LM, Burton BJ, Browning P (eds) Ophiolites and their modern oceanic analogues, vol 60. Geological Society, London, pp 219–232

    Google Scholar 

  • Wells DM, Mills RA, Roberts S (1998) Rare earth element mobility in a mineralized alteration pipe within the Troodos ophiolite, Cyprus. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record, vol 148. Geological Society, London, pp 153–176

    Google Scholar 

  • Wheat CG, Mottl MJ (2000) Composition of pore and spring waters from baby bare: global implications of geochemical fluxes from a ridge flank hydrothermal system. Geochim Cosmochim Acta 64:629–642

    Article  Google Scholar 

  • Wheat CG, Feely RA, Mottl MJ (1996) Phosphate removal by oceanic hydrothermal processes: an update of the phosphorus budget in the oceans. Geochim Cosmochim Acta 60:3593–3608

    Article  Google Scholar 

  • Wilcock WSD, Delaney JR (1996) Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet Sci Lett 145:49–65

    Article  Google Scholar 

  • Winter JD (2001) An introduction to igneous and metamorphic petrology. Prentice Hall, New Jersey

    Google Scholar 

  • Wolery TJ, Jarek RL (2003) Software user’s manual EQ3/6 (version 8.0). Sandia National Laboratories, Albuquerque/New Mexico

    Google Scholar 

  • Zharikov VA, Pertsev NN, Rusinov VL, Callegari E, Fettes DJ (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS Subcommission on the systematics of metamorphic rocks. Online document: http://www.bgs.ac.uk/scmr/docs/papers/paper_9.pdf. Accessed 6 Oct 2010

  • Zierenberg RA, Shanks WC III, Seyfried WE Jr, Koski RA, Strickler MD (1988) Mineralization, alteration, and hydrothermal metamorphism of the ophiolite-hosted Turner-Albright sulfide deposit, southwestern Oregon. J Geophys Res 93:4657–4674

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Deutsche Forschungsgemeinschaft grant BA1605/1 and BA1605/2 as well as the Marum Research Cluster of Excellence. F. Klein acknowledges the financial support by an Ocean Ridge Initiative Research Award and the Deep Ocean Exploration Institute at the Woods Hole Oceanographic Institution. We are particularly grateful to Michael Hentscher for assembling the thermodynamic database. The paper benefited from insightful reviews of J. S. Beard and F. Pirajno. We thank Dan Harlov and Håkon Austrheim for helpful editorial advise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Bach .

Appendix

Appendix

Thermodynamic calculations were used to predict phase relations in ocean floor metasomatism. In fluid-rock interactions, factors controlling the stable mineral assemblages, besides temperature and pressure, are the primary rock composition, the composition of the fluid entering the system, and the mass flux of that fluid through the system. The dependencies of the metasomatic assemblages on fluid flux and rock composition can be examined using simple isothermal and isobaric geochemical titration models, in which rock is added to a constant amount of H2O. In oceanic crust metasomatism, the composition of the fluid entering the system (oceanic crust) is seawater. The composition of seawater is from Klein et al. (2009) as is the composition of mantle peridotite. Average mid-ocean ridge basalt from the mid-Atlantic Ridge (Klein 2004) was used as a starting composition for the basalt. In the models of diffusional metasomatism, the fluid into which the rock is titrated is seawater that has reacted with one rock type, before it is allowed to react with the other one. For instance, in the steatitization model, seawater was first equilibrated with basalt and the resulting fluid was reacted with serpentinite.

Geochemical reaction path modeling was conducted using EQ3/6 (Wolery and Jarek 2003). The database was compiled for a pressure of 100 MPa using SUPCRT92 (Johnson et al. 1991). Specifics about the database and calculations (solid solutions, activity models, etc.) are provided in Bach and Klein (2009), McCollom and Bach (2009), and Klein et al. (2009).

In all diagrams displaying results of the reaction path model calculations, we plot predicted modes versus a reaction progress number (ξ). ξ is scaled to the amount of rock titrated into the system. This must not be confused with physical water-to-rock ratios and we thus purposely do not report the mass of rock added in the models. The rock mass was chosen merely as an internal parameter to have the model predict the full range of a metasomatic sequence. In all models, ξ =1 corresponds to approximately equal masses of rock and water. In other words, at ξ =1, the intergranular fluid is entirely controlled by the rock added. As ξ approaches zero, the rock is more and more controlled by the composition of the externally buffered fluid (seawater, intergranular fluids in basalt or in peridotite, etc.). In the models of diffusional metasomatism, one can look at ξ as a measure of distance to the interface between lithologies. Small ξ means close to the contact. With increasing ξ we move away from the contact and into the lithology that is being metasomatized under the influence of an externally buffered fluid.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Bach, W., Jöns, N., Klein, F. (2013). Metasomatism Within the Ocean Crust. In: Metasomatism and the Chemical Transformation of Rock. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28394-9_8

Download citation

Publish with us

Policies and ethics