Skip to main content

Empirical Results of Pedestrian and Evacuation Dynamics

  • Living reference work entry
  • First Online:
Encyclopedia of Complexity and Systems Science

Glossary

Bottleneck :

A bottleneck is in general a part of facility limiting pedestrian flows. This can be, for example, a door, a narrowing in a corridor, or stairs, i.e., locations of reduced capacity. At bottlenecks jamming occurs if the inflow is higher than the capacity.

Capacity :

The maximal flow rate supported by a facility is called “capacity.”

Crowd disaster :

Crowd disaster is an accident in which the specific behavior of the crowd is a relevant factor, e.g., through competitive and nonadaptive behavior. In the media, it is often called “panic” which is a scientifically not proven concept in crowd dynamics and should thus be avoided.

Crowd :

A large group of pedestrians who have gathered together. Depending on the perspective, more specific definitions exist.

Evacuation :

Evacuation is the movement of persons from a dangerous place due to the threat or occurrence of a disastrous event. In normal situations this is called “egress” instead.

Flow rate :

The flow rate Jis a...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

Primary Literature

  • Abe K (1986) The science of human panic. Brain Publishing, Tokyo (in Japanese)

    Google Scholar 

  • Alhajyaseen WK, Nakamura H, Asano M (2011) Effects of bidirectional pedestrian flow characteristics upon the capacity of signalized cross-walks. Procedia Soc Behav Sci 16:526–535

    Article  Google Scholar 

  • Ali S, Shah M (2007) A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Conference on computer vision and pattern recognition, pp 1–6

    Google Scholar 

  • Allen JG, Xu RYD, Jin JS. Object tracking using camshift algorithm and multiple quantized feature spaces. In: Proceedings of the Pan-Sydney area workshop on visual information processing (Darlinghurst, Australia, Australia, 2004), VIP ’05, Australian Computer Society, pp 3–7

    Google Scholar 

  • Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J-P, Schreckenberg M (2009) Traffic and granular flow ’07. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • ASA. In disasters, panic is rare; altruism dominates. Technical report, ASA, Aug 2002

    Google Scholar 

  • Ashe B, Shields TJ (1999) Analysis and modelling of the unannounced evacuation of a large retail store. Fire Mater 23:333–336

    Article  Google Scholar 

  • Barlovic R, Santen L, Schadschneider A, Schreckenberg M (1998) Metastable states in cellular automata for traffic flow. Eur Phys J B 5:793

    Article  ADS  Google Scholar 

  • Benedek C (2014) 3d people surveillance on range data sequences of a rotating lidar. Pattern Recogn Lett Special Issue Depth Image Anal 50:149

    Google Scholar 

  • Bode NWF, Holl S, Mehner W, Seyfried A (2015) Disentangling the impact of social groups on response times and movement dynamics in evacuation. PLoS One 10:0121227

    Google Scholar 

  • Boltes M, Seyfried A (2013) Collecting Pedestrian Trajectories. Neurocomputing, Special Issue Behav Video 100:127–133

    Google Scholar 

  • Boltes M, Seyfried A, Steffen B, Schadschneider A (2010) Automatic extraction of pedestrian trajectories from video recordings. In: Klingsch WWF, Rogsch C, Schadschneider A, Schreckenberg M (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 43–54

    Chapter  Google Scholar 

  • Boltes M, Seyfried A, Steffen B, Schadschneider A (2011) Using stereo recordings to extract pedestrian trajectories automatically in space. In: Peacock RD et al (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 751–754

    Chapter  Google Scholar 

  • Boltes M, Holl S, Tordeux A, Seyfried A, Schadschneider A, Lang U (2017a) Influences of extraction techniques on the quality of measured quantities of pedestrian characteristics. In: Song W, Ma J, Fu L (eds) Proceedings of pedestrian and evacuation dynamics 2016. Collective Dynamics 1, 0, pp 500–547, 618

    Google Scholar 

  • Boltes M, Schumann J, Salden D (2017b) Gathering of data under laboratory conditions for the deep analysis of pedestrian dynamics in crowds. In: 2017 14th IEEE international conference on advanced video and signal based surveillance (AVSS)

    Google Scholar 

  • Bouguet J-Y (1999) Pyramidal implementation of the Lucas Kanade feature tracker. OpenCV Documents

    Google Scholar 

  • Boyce KE, Shields TJ, Silcock GWH (1999) Toward the characterization of building occupancies for fire safety engineering: capabilities of disabled people moving horizontally and on an incline. Fire Technol 35:51–67

    Article  Google Scholar 

  • Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. Intel Technol J 2:1–15

    Google Scholar 

  • Brown DC (1971) Close-range camera calibration. Photogramm Eng 37:855–866

    Google Scholar 

  • Bryan JL (1995) Chapter 3. Behavioral response to fire and smoke. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering, 2nd edn. National Fire Protection Association, Quincy, p 263

    Google Scholar 

  • Bukáček M, Hrabák P, Krbálek M (2014) Experimental study of phase transition in pedestrian flow. Transp Res Procedia 2:105–113

    Article  Google Scholar 

  • Bukáček M, Hrabák P, Krbálek M (2015) Experimental analysis of two-dimensional pedestrian flow in front of the bottleneck – experimental analysis of 2d pedestrian flow. In: Chraibi M et al (eds) Traffic and granular flow ’13. Springer, Heidelberg, pp 93–101

    Google Scholar 

  • Burghardt S, Seyfried A, Klingsch W (2010) Improving egress design through measurement and correct interpretation of the fundamental diagram for stairs. In: Panda M, Chattaraj U (eds) Developments in road transportation. NIT Rourkela, Odisha, India. Macmillan Publishers India Ltd, pp 181–187

    Google Scholar 

  • Burghardt S, Seyfried A, Klingsch W (2013) Performance of stairs – fundamental diagram and topographical measurements. Transp Res C Emerg Technol 37:268

    Article  Google Scholar 

  • Burstedde C, Klauck K, Schadschneider A, Zittartz J (2001) Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Physica A 295:507–525

    Article  ADS  MATH  Google Scholar 

  • Cao S, Zhang J, Salden D, Ma J, Shi C, Zhang R (2016) Pedestrian dynamics in single-file movement of crowd with different age compositions. Phys Rev E 94: 012312

    Google Scholar 

  • Cao S, Seyfried A, Zhang J, Holl S, Song W (2017) Fundamental diagrams for multidirectional pedestrian flows. J Stat Mech Theory Exp 2017:033404

    Article  Google Scholar 

  • Chakrabarti J, Dzubiella J, Löwen H (2004) Reentrance effect in the lane formation of driven colloids. Phys Rev E 70:012401

    Article  ADS  Google Scholar 

  • Chattaraj U, Seyfried A, Chakroborty P (2009) Comparison of pedestrian fundamental diagram across cultures. Adv Complex Syst 12(3):393–405

    Article  Google Scholar 

  • Chen X, Ye J, Jian N (2010) Relationships and characteristics of pedestrian traffic flow in confined passageways. Transp Res Rec J Transp Res Board 2198:32–40

    Article  Google Scholar 

  • Chen J, Lo SM, Ma J (2017) Pedestrian ascent and descent fundamental diagram on stairway. J Stat Mech Theory Exp 2017(8):083403

    Article  Google Scholar 

  • Chraibi M, Seyfried A, Schadschneider A (2010) Generalized centrifugal force model for pedestrian dynamics. Phys Rev E 82:046111

    Article  ADS  Google Scholar 

  • Chraibi M, Boltes M, Schadschneider A, Seyfried A (eds) (2015) Traffic and granular flow ’13. Springer, Heidelberg

    Google Scholar 

  • Chraibi M, Tordeux A, Schadschneider A, Seyfried A (2018) Modelling of pedestrian and evacuation dynamics. In: Encyclopedia of complexity and system sciences, Springer

    Google Scholar 

  • Christensen K, Sharifi MS, Stuart D, Chen A, Kim YS, Chen Y (2014) Overview of a large-scale controlled experiment on pedestrian walking behavior involving individual with disabilities. In The 93rd annual meeting of the transportation research board

    Google Scholar 

  • Clarke LP (2002) Myth or reality? Contexts 1:21–26

    Article  Google Scholar 

  • Code H. International code of safety for high-speed craft, 2000 (2000 HSC Code). Technical report, International Maritime Organization (IMO), 2000. Resolution MSC97(73)

    Google Scholar 

  • Coleman JS (1990) Foundation of social theory. Belknap, Cambridge, MA. Chapter 9

    Google Scholar 

  • Corbetta A, Bruno L, Muntean A, Toschi F (2014) High statistics measurements of pedestrian dynamics. Transp Res Procedia 2:96–104

    Article  Google Scholar 

  • Daamen W, Hoogendoorn SP (2006) Flow-density relations for pedestrian traffic. In: Schadschneider A et al (eds) Traffic and granular flow ’05. Springer, Berlin

    Google Scholar 

  • Daamen W, Hoogendoorn SP (2010) Capacity of doors during evacuation conditions. Procedia Eng 3(0):53–66. 1st Conference on Evacuation Modeling and Management

    Article  Google Scholar 

  • Daamen W, Bovy PHL, Hoogendoorn SP (2002) Modelling pedestrians in transfer stations. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 59–73

    Google Scholar 

  • Daganzo CF (2006) On the variational theory of traffic flow: well-posedness, duality and applications. Netw Heterog Media 1:601

    Article  MathSciNet  MATH  Google Scholar 

  • de Gelder B, Snyder J, Greve D, Gerard G, Hadjikhani N (2004) Fear fosters flight: a mechanism for fear contagion when perceiving emotion expressed by a whole body. Proc Natl Acad Sci 101(47):16701–16706

    Article  ADS  Google Scholar 

  • Dieckmann D (1911) Die Feuersicherheit in Theatern. Jung (München). (in German)

    Google Scholar 

  • Dogliani M (2002) An overview of present and under-development IMO’s requirements concerning evacuation from ships. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 339–354

    Google Scholar 

  • Dollár P, Wojek C, Schiele B, Perona P (2012) Pedestrian detection: An evaluation of the state of the art. Pattern Anal Mach Intell IEEE Trans 34(4):743–761

    Article  Google Scholar 

  • Dzubiella J, Hoffmann GP, Löwen H (2002) Lane formation in colloidal mixtures driven by an external field. Phys Rev E 65:021402

    Article  ADS  Google Scholar 

  • Edie L (1963) Discussion of traffic stream measurements and definitions. In: Almond J (ed) Proceedings of the 2nd international symposium theory of traffic flow, pp 139–154

    Google Scholar 

  • El Yacoubi S, Chopard B, Bandini S (eds) (2006) Cellular automata – 7th international conference on cellular automata for research and industry, ACRI 2006. Springer, Perpignan

    MATH  Google Scholar 

  • Ezaki T, Ohtsuka K, Chraibi M, Boltes M, Yanagisawa D, Seyfried A, Schadschneider A, Nishinari K (2016) Inflow process of pedestrians to a confined space. Collective Dyn 1:1–18

    Article  Google Scholar 

  • FAA (1990) F. A. A. Emergency evacuation – cfr sec. 25.803. Regulation CFR Sec. 25.803, Federal Aviation Administration

    Google Scholar 

  • Feliciani C, Nishinari K (2016) Empirical analysis of the lane formation process in bidirectional pedestrian flow. Phys Rev E 94:032304

    Article  ADS  Google Scholar 

  • Fischer H (1933) Über die Leistungsfähigkeit von Türen, Gängen und Treppen bei ruhigem, dichtem Verkehr. Dissertation, Technische Hochschule Dresden. in German

    Google Scholar 

  • Forell B, Seidenspinner R, Hosser D (2010) Quantitative comparison of international design standards of escape routes in assembly buildings. In: Klingsch W et al (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 791–801

    Chapter  Google Scholar 

  • Forschungszentrum Jülich, Jülich Supercomputing Centre. Data archive of experiments on pedestrian dynamics. http://ped.fz-juelich.de/dataarchive 18 Nov 2018

  • Frantzich H (1994) A model for performance-based design of escape routes. Technical report 1011, Department of Fire Safety Engineering, Lund Institute of Technology

    Google Scholar 

  • Frantzich H (1996) Study of movement on stairs during evacuation using video analysing techniques. Technical report, Department of Fire Safety Engineering, Lund Institute of Technology

    Google Scholar 

  • Fruin JJ (1971) Pedestrian planning and design. Elevator World, New York

    Google Scholar 

  • Fujiyama T, Tyler N (2004a) An explicit study on walking speeds of pedestrians on stairs. In: 10th international conference on mobility and transport for elderly and disabled people

    Google Scholar 

  • Fujiyama T, Tyler N (2004b) Pedestrian speeds on stairs: an initial step for a simulation model. In: Proceedings of 36th Universities’ Transport Studies Group Conference

    Google Scholar 

  • Galea ER (2002) Simulating evacuation and circulation in planes, trains, buildings and ships using the EXODUS software. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 203–226

    Google Scholar 

  • Galea ER (ed) (2003) Pedestrian and evacuation dynamics 2003. CMS Press, London

    Google Scholar 

  • Garcimartín A, Parisi DR, Pastor JM, Martín-Gómez C, Zuriguel I (2016) Flow of pedestrians through narrow doors with different competitiveness. J Stat Mech Theory Exp 2016:043402

    Article  MathSciNet  Google Scholar 

  • Gmiterko A, Liptak T (2013) Motion capture of human for interaction with service robot. Am J Mech Eng 1:212–216

    Google Scholar 

  • Graat E, Midden C, Bockholts P (1999) Complex evacuation; effects of motivation level and slope of stairs on emergency egress time in a sports stadium. Saf Sci 31:127–141

    Article  Google Scholar 

  • Grosshandler W, Sunder S, Snell J (2003) Building and fire safety investigation of the world trade center disaster. In: Galea ER (ed) Pedestrian and evacuation dynamics 2003. CMS Press, London, pp 279–281

    Google Scholar 

  • Hadi HS, Rosbi M, Sheikh UU (2013) A review of infrared spectrum in human detection for surveillance systems. Int J Interact Digit Media 1(3):13–20

    Google Scholar 

  • Hamacher HW, Tjandra SA (2002) Mathematical modelling of evacuation problems – a state of the art. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 227–266

    MATH  Google Scholar 

  • Hankin BD, Wright RA (1958) Passenger flow in subways. Oper Res Q 9(2):81–88

    Article  Google Scholar 

  • Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067

    Article  ADS  Google Scholar 

  • Helbing D, Buzna L, Johansson A, Werner T (2005) Self-organized pedestrian crowd dynamics: experiments, simulations, and design solutions. Transp Sci 39:1–24

    Article  Google Scholar 

  • Helbing D, Johansson A, Al-Abideen HZ (2007) Dynamics of crowd disasters: an empirical study. Phys Rev E 75:046109

    Article  ADS  Google Scholar 

  • Holl S, Seyfried A (2009) Hermes – an evacuation assistent for mass events. inSiDe 7:60

    Google Scholar 

  • Holl S, Schadschneider A, Seyfried A (2014) Hermes: an evacuation assistant for large arenas. In: Weidmann U et al (eds) Pedestrian and evacuation dynamics 2012 (Zürich, 2014). Springer, Berlin/Heidelberg, p 345

    Google Scholar 

  • Hoogendoorn SP, Daamen W (2005) Pedestrian behavior at bottlenecks. Transp Sci 39(2):0147–0159

    Article  Google Scholar 

  • Hoogendoorn S, Daamen W, Bovy P (2003a) Extracting microscopic pedestrian characteristics from video data. In: TRB2003 annual meeting

    Google Scholar 

  • Hoogendoorn SP, Daamen W, Bovy PHL (2003b) Microscopic pedestrian traffic data collection and analysis by walking experiments: behaviour at bottlenecks. In: Galea ER (ed) Pedestrian and evacuation dynamics 2003. CMS Press, London, pp 89–100

    Google Scholar 

  • Hoskin KJ, Spearpoint M (2004) Crowd characteristics and egress at stadia. In: Shields TJ (ed) Human Behaviour in Fire. Intersience, London, pp 367–376

    Google Scholar 

  • ISO-TR-13387-8-1999 (1999) Fire safety engineering – part 8: life safety – occupant behaviour, location and condition. Technical report, International Organization for Standardization. www.iso.org

  • Jafari OH, Mitzel D, Leibe B (2014) Real-time rgb-d based people detection and tracking for mobile robots and head-worn cameras. In: IEEE international conference on robotics and automation (ICRA)

    Google Scholar 

  • Jelić A, Appert-Rolland C, Lemercier S, Pettré J (2012) Properties of pedestrians walking in line: fundamental diagrams. Phys Rev E 85:9

    Article  Google Scholar 

  • Johnson NR (1987) Panic at “The Who Concert Stampede”: an empirical assessment. Soc Probl 34:362–373

    Article  Google Scholar 

  • Jungermann H, Göhlert C (2000) Emergency evacuation from double-deck aircraft. In: Cottam M, Harvey D, Pape R, Tait J (eds) Foresight and precaution. Proceedings of ESREL 2000, SARS and SRA Europe annual conference. A.A. Balkema, Rotterdam, pp 989–992

    Google Scholar 

  • Keating JP (1982) The myth of panic. Fire J:57–62

    Google Scholar 

  • Kerner BS (2004) The physics of traffic. Springer, Berlin

    Book  Google Scholar 

  • Kerner B (2017) Breakdown in traffic networks – fundamentals of transportation science. Springer, Berlin/Heidelberg

    Book  MATH  Google Scholar 

  • Kirchner A, Klüpfel H, Nishinari K, Schadschneider A, Schreckenberg M (2004) Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J Stat Mech 2004(10):P10011

    Article  MATH  Google Scholar 

  • Kiss Á, Szirányi T (2013) Localizing people in multi-view environment using height map reconstruction in real-time. Pattern Recogn Lett 34(16):2135–2143

    Article  Google Scholar 

  • Kitazawa K, Fujiyama T (2010) Pedestrian vision and collision avoidance behavior: investigation of the information process space of pedestrians using an eye tracker. In: Klingsch W et al (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 95–108

    Chapter  Google Scholar 

  • Klingsch W, Rogsch C, Schadschneider A, Schreckenberg M (eds) (2010) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Knoop VL, Daamen W (eds) (2016) Traffic and granular flow ’15. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Knoop V, Hoogendoorn S, van Zuylen H (2009) Empirical differences between time mean speed and space mean speed. In: Appert-Rolland C, Chevoir F, Gondret P, Lassarre S, Lebacque J-P, Schreckenberg M (eds) Traffic and Granular Flow ‘07. Springer, Berlin/Heidelberg

    Google Scholar 

  • Kozlov V, Buslaev A, Bugaev A, Yashina M, Schadschneider A, Schreckenberg M (eds) (2013) Traffic and granular flow ’11. Springer, Heidelberg

    Google Scholar 

  • Krausz B, Bauckhage C (2012) Loveparade 2010: automatic video analysis of a crowd disaster. Comput Vis Image Underst 116(3):307–319 Special issue on Semantic Understanding of Human Behaviors in Image Sequences

    Article  Google Scholar 

  • Kretz T (2007) Pedestrian traffic – simulation and experiments. PhD thesis, Universität Duisburg-Essen, Fachbereich Physik

    Google Scholar 

  • Kretz T, Grünebohm A, Kaufman M, Mazur F, Schreckenberg M (2006a) Experimental study of pedestrian counterflow in a corridor. J Stat Mech 2006:P10001

    Article  Google Scholar 

  • Kretz T, Grünebohm A, Schreckenberg M (2006b) Experimental study of pedestrian flow through a bottleneck. J Stat Mech 2006:P10014

    Article  Google Scholar 

  • Kretz T, Grünebohm A, Kessel A, Klüpfel H, Meyer-König T, Schreckenberg M (2008) Upstairs walking speed distributions on a long stairway. Saf Sci 46(1):72–78

    Article  Google Scholar 

  • Lam WHK, Cheung CY (2000) Pedestrian speed/flow relationships for walking facilities in hong kong. J Transp Eng 126:343–349

    Article  Google Scholar 

  • Lam WHK, Lee JYS, Cheung CY (2002) A study of the bidirectional pedestrian flow characteristics at Hong Kong signalized crosswalk facilities. Transportation 29:169–192

    Article  Google Scholar 

  • Lam WHK, Lee JYS, Chan KS, Goh PK (2003) A generalised function for modeling bi-directional flow effects on indoor walkways in Hong Kong. Transp Res A Policy Pract 37:789–810

    Article  Google Scholar 

  • Le Bon G (1895) The crowd: a study of the popular mind (Psychologie des Foules). Sparkling Books

    Google Scholar 

  • Lemercier S, Moreau M, Moussaïd M, Theraulaz G, Donikian S, Pettré J (2011) Reconstructing motion capture data for human crowd study. Lect Notes Comput Sci 7060:365–376

    Article  Google Scholar 

  • Leutzbach W (1988) Introduction to the theory of traffic flow. Springer, Berlin

    Book  Google Scholar 

  • Lian L, Mai X, Song W, Kit YK (2015a) An experimental study on four-directional intersecting pedestrian flows. J Stat Mech 2015:P08024

    Article  Google Scholar 

  • Lian L, Mai X, Song W, Richard KYK, Wei X, Ma J (2015b) An experimental study on four-directional intersecting pedestrian flows. J Stat Mech Theory Exp 2015(8):P08024

    Article  Google Scholar 

  • Liddle J, Seyfried A, Klingsch W, Rupprecht T, Schadschneider A, Winkens A (2009) An experimental study of pedestrian congestions: Influence of bottleneck width and length. available from https://arxiv.org/abs/0911.4350

  • Liu X, Song W, Zhang J (2009) Extraction and quantitative analysis of microscopic evacuation characteristics based on digital image processing. Physica A 388(13):2717–2726

    Article  ADS  Google Scholar 

  • Liu X, Song W, Fu L, Fang Z (2016) Experimental study of pedestrian inflow in a room with a separate entrance and exit. Physica A 442:224–238

    Article  ADS  Google Scholar 

  • McPhail C, Tucker C (2003) Collective behaviour. In: Reynolds L, Herman-Kinney NJ (eds) Handbook of symbolic interactionism. Altamira, Walnut Creek, pp 721–741

    Google Scholar 

  • Mehner W, Boltes M, Seyfried A (2016) Methodology for generating individualized trajectories from experiments. In: Knoop VL, Daamen W (eds) Traffic and granular flow ’15. Springer, Berlin/Heidelberg, pp 3–10

    Chapter  Google Scholar 

  • Mehner W, Boltes M, Mathias M, Leibe B (2015) Robust marker-based tracking for measuring crowd dynamics. Springer International Publishing, Cham, pp 445–455

    Google Scholar 

  • Meyer-König T, Klüpfel H, Schreckenberg M (2002) Assessment and analysis of evacuation processes on passenger ships by microscopic simulation. In: Schreckenberg M, Sharma SD (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 297–302

    Google Scholar 

  • Mintz A (1951) Non-adaptive group behaviour. J Abnorm Soc Psychol 46:150–159

    Article  Google Scholar 

  • Morerio P, Marcenaro L, Regazzoni CS (2012) People count estimation in small crowds. In: Advanced video and signal-based surveillance (AVSS), 2012 I.E. ninth international conference on, pp 476–480

    Google Scholar 

  • Morrall JF, Ratnayake LL, Seneviratne PN (1991) Comparison of central business district pedestrian characteristics in Canada and Sri Lanka. Transp Res Rec 1294:57

    Google Scholar 

  • MSC-Circ.1033. Interim guidelines for evacuation analyses for new and existing passenger ships. Technical report, International Maritime Organization, Marine Safety Committee, London, June, 6th 2002. MSC/Circ. 1033

    Google Scholar 

  • MSC-Circ.1166. Guidelines for a simplified evacuation analysis for high-speed passenger craft. Technical report, International Maritime Organisation 2005

    Google Scholar 

  • Muir HC (2002) Airplane of the 21st century: challenges in safety and survivability. In: Airplane survivability issues in the 21st century

    Google Scholar 

  • Muir HC, Bottomley DM, Marrison C (1996) Effects of motivation and cabin configuration on emergency aircraft evacuation behavior and rates of Egress. Int J Aviat Psychol 6(1):57–77

    Article  Google Scholar 

  • Müller K (1981) Zur Gestaltung und Bemessung von Fluchtwegen für die Evakuierung von Personen aus Bauwerken auf der Grundlage von Modellversuchen. Dissertation, Technische Hochschule Magdeburg

    Google Scholar 

  • Muybridge E (1887) Animal locomotion, plate 519. Da Capo Press, New York

    Google Scholar 

  • MVStättV – Erläuterungen: Musterverordnung über den Bau und Betrieb von Versammlungsstätten, Erläuterungen, Juni 2005. www.is-argebau.de

  • Nagai R, Fukamachi M, Nagatani T (2006) Evacuation of crawlers and walkers from corridor through an exit. Physica A 367:449–460

    Article  ADS  Google Scholar 

  • Navin FD, Wheeler RJ (1969) Pedestrian flow characteristics. Traffic Eng 39:30–36

    Google Scholar 

  • Nelson HE, Mowrer FW (2002) Chapter 14. Emergency movement. In: DiNenno PJ (ed) SFPE handbook of fire protection engineering. National Fire Protection Association, Quincy, pp 367–380

    Google Scholar 

  • Nguyen DT, Li W, Ogunbona PO (2016) Human detection from images and videos: A survey. Pattern Recogn 51:148–175

    Article  Google Scholar 

  • NMJP. The high-speed craft MS Sleipner Disaster 26 November 1999. Official Norwegian Reports 2000:31, Norwegian Ministry of Justice and Police, Oslo, 2000

    Google Scholar 

  • Oeding D. Verkehrsbelastung und Dimensionierung von Gehwegen und anderen Anlagen des Fußgängerverkehrs. Forschungsbericht 22, Technische Hochschule Braunschweig, 1963

    Google Scholar 

  • Older SJ (1968) Movement of pedestrians on footways in shopping streets. Traffic Eng Control 10:160–163

    Google Scholar 

  • Owen M, Galea ER, Lawrence PJ, Filippidis L (1998) AASK – aircraft accident statistics and knowledge: a database of human experience in evacuation, derived from aviation accident reports. Aeronaut J 102:353–363

    Google Scholar 

  • Pathan SS, Richter K (2015) Pedestrian behavior analysis with image-based method in crowds. In: Chraibi M et al (eds) Traffic and granular flow ’13. Springer, Heidelberg, pp 187–194

    Google Scholar 

  • Pauls JL Evacuation drill held in the b. c. hydro building 26 June 1969. Building Research Note 80, NRCC, September 1971

    Google Scholar 

  • Pauls JL, Fruin JJ, Zupan JM (2006) Minimum stair width for evacuytion, overtaking movement and counterflow – technical bases and suggestions for the past, present and future. In: Waldau N et al (eds) Pedestrian and evacuation dynamics 2005. Springer, Berlin, pp 57–69

    Google Scholar 

  • Peacock RD, Kuligowski ED, Averill JD (eds) (2011) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg

    Google Scholar 

  • Pellicanò N, Aldea E, Hegarat-Mascle SL (2017) Geometry-based multiple camera head detection in dense crowds. In: Proceedings of 28th British Machine Vision Conference (BMVC) – 5th activity monitoring by multiple distributed sensing workshop

    Google Scholar 

  • Portz A, Seyfried A (2011) Analyzing stop-and-go waves by experiment and modeling. In: Peacock RD et al. (eds) Pedestrian and evacuation dynamics. Springer Berlin/Heidelberg, pp. 577–586

    Chapter  Google Scholar 

  • Predtechenskii VM, Milinskii AI (1978) Planing for foot traffic flow in buildings. Amerind Publishing, New Delhi. Translation of: Proekttirovanie Zhdanii s Uchetom Organizatsii Dvizheniya Lyuddskikh Potokov, Stroiizdat Publishers, Moscow 1969

    Google Scholar 

  • Predtetschenski W, Milinski A (1971) Personenströme in Gebäuden – Berechnungsmethoden für die Modellierung. Müller, Köln-Braunsfeld

    Google Scholar 

  • Purser DA, Bensilium M (2001) Quantification of behaviour for engineering design standards and escape time calculations. Saf Sci 38(2):158–182

    Article  Google Scholar 

  • Pushkarev B, Zupan JM (1975) Capacity of walkways. Transp Res Rec 538:1–15

    Google Scholar 

  • Rameshbabu K, Swarnadurga J, Archana G, Menaka K (2012) Target tracking system using kalman filter. Int J Adv Eng Res Stud 2:90–94

    Google Scholar 

  • Revi A (2006) Pre and post-cyclone & storm surge evacuation & emergency response in India. In: Waldau N et al (eds) Pedestrian and evacuation dynamics 2005. Springer, Berlin

    Google Scholar 

  • Rex M, Löwen H (2007) Lane formation in oppositely charged colloids driven by an electric field: chaining and two-dimensional crystallization. Phys Rev E 75:051402

    Article  ADS  Google Scholar 

  • Rupprecht T, Klingsch W, Seyfried A (2011) Influence of geometry parameters on pedestrian flow through bottleneck. In: Peacock RD et al (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 71–80

    Chapter  Google Scholar 

  • Ryan D, Denman S, Sridharan S, Fookes C (2014) An evaluation of crowd counting methods, features and regression models. Comput Vis Image Underst 130:1–17

    Article  Google Scholar 

  • Saadat S, Teknomo K (2011) Automation of pedestrian tracking in a crowded situation. In: Peacock RD et al (eds) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg, pp 231–239

    Chapter  Google Scholar 

  • Saito H, Hagihara T, Hatanaka K, Sawai T (2008) Development of pedestrian detection system using far-infrared ray camera. SEI Techn Rev 66:112–117

    Google Scholar 

  • Saloma C (2006) Herding in real escape panic. In: Waldau N et al (eds) Pedestrian and evacuation dynamics 2005. Springer, Berlin

    Google Scholar 

  • Schadschneider A, Seyfried A (2011) Empirical results for pedestrian dynamics and their implications for modeling. Netw Heterog Media 6:545–560

    Article  MathSciNet  MATH  Google Scholar 

  • Schadschneider A, Pöschel T, Kühne R, Schreckenberg M, Wolf D (eds) (2006) Traffic and granular flow ’05. Springer, Berlin

    Google Scholar 

  • Schadschneider A, Eilhardt C, Nowak S, Wagoum AK, Seyfried A (2013) Hermes – an evacuation assistant for large sports arenas based on microscopic simulations of pedestrian dynamics. In: Kozlov V et al (eds) Traffic and granular flow ’11. Springer, Heidelberg, p 287

    Chapter  Google Scholar 

  • Schelajew J, Schelajewa E, Semjonow N (2000) Nikolaus II. Der letzte russische Zar. Bechtermünz, Augsburg

    Google Scholar 

  • Schneider U, Kath K, Oswald M, Kirchberger H (2006) Evakuierung und Verhalten von Personen im Brandfall unter spezieller Berücksichtigung von schienengebundenen Fahrzeugen. Technical report 12, TU Wien

    Google Scholar 

  • Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Schreckenberg M, Wolf DE (eds) (1998) Traffic and granular flow ’97. Springer, Singapore

    Google Scholar 

  • Schumann J, Boltes M (2017) Tracking of wheelchair users in dense crowds. In: 2017 international conference on indoor positioning and indoor navigation (IPIN)

    Google Scholar 

  • Schweingruber D, Wohlstein RT (2005) The madding crowd goes to school: myths about crowds in introductory sociology textbooks. Teach Sociol 33(2):136–153

    Article  Google Scholar 

  • Seeger PG, John R (1978) Untersuchung der Räumungsabläufe in Gebäuden als Grundlage für die Ausbildung von Rettungswegen, Teil III: Reale Räumungsversuche. Technical report T395, Forschungsstelle für Brandschutztechik an der Universität Karlsruhe (TH)

    Google Scholar 

  • Seer S, Bauer D, Brändle N, Ray M (2008) Estimating pedestrian movement characteristics for crowd control at public transport facilities. In: 11th international IEEE conference on intelligent transport systems

    Google Scholar 

  • Seitz MJ, Köster G (2012) Natural discretization of pedestrian movement in continuous space. Phys Rev E 86:046108

    Article  ADS  Google Scholar 

  • Seyfried A, Steffen B, Klingsch W, Boltes M (2005) The fundamental diagram of pedestrian movement revisited. J Stat Mech 2005:P10002

    Article  Google Scholar 

  • Seyfried A, Steffen B, Lippert T (2006) Basics of modelling the pedestrian flow. Physica A 368:232–238

    Article  ADS  Google Scholar 

  • Seyfried A, Rupprecht T, Passon O, Steffen B, Klingsch W, Boltes M (2007) Capacity estimation for emergency exits and bootlenecks. In: Interflam 2007 – conference proceedings

    Google Scholar 

  • Seyfried A, Portz A, Schadschneider A (2010a) Phase coexistence in congested states of pedestrian dynamics. Lect Notes Comp Sci 6350:496

    Article  MATH  Google Scholar 

  • Seyfried A, Boltes M, Kähler J, Klingsch W, Portz A, Rupprecht T, Schadschneider A, Steffen B, Winkens A (2010b) Enhanced empirical data for the fundamental diagram and the flow through bottlenecks. In: Klingsch W et al (eds) Pedestrian and evacuation dynamics 2008. Springer, Berlin/Heidelberg, pp 145–156

    Chapter  Google Scholar 

  • Shi X, Ye Z, Shiwakoti N, Li Z (2015) A review of experimental studies on complex pedestrian movement behaviors. In: CICTP 2015, pp 1081–1096

    Google Scholar 

  • Shiwakoti N, Gong Y, Shi X, Ye Z (2015a) Examining influence of merging architectural features on pedestrian crowd movement. Saf Sci 75:15–22

    Article  Google Scholar 

  • Shiwakoti N, Shi X, Zhirui Y, Wang W (2015b) Empirical study on pedestrian crowd behaviour in right angled junction. In: 37th Australasian Transport Research Forum (ATRF)

    Google Scholar 

  • Sieben A, Schumann J, Seyfried A (2017) Collective phenomena in crowds – where pedestrian dynamics need social psychology. PLoS One 12:1–19

    Article  Google Scholar 

  • Sime JD (1990) Chapter. 5. The concept of panic. In: Canter D (ed) Fires and human behaviour, vol 1. Wiley, London, pp 63–81

    Google Scholar 

  • Song W, Ma J, Fu L (2017) Proceedings of pedestrian and evacuation dynamics 2016. Collective Dyn 1(0):618

    Google Scholar 

  • Steffen B, Seyfried A (2010) Methods for measuring pedestrian density, flow, speed and direction with minimal scatter. Physica A 389:1902–1910

    Article  ADS  Google Scholar 

  • Stuart D, Christensen K, Chen A, Kim YS, Chen Y (2013) Utilizing augmented reality technology for crowd pedestrian analysis involving individuals with disabilities. In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference

    Google Scholar 

  • Sun J, Lu S, Lo S, Ma J, Xie Q (2018) Moving characteristics of single file passengers considering the effect of ship trim and heeling. Physica A 490:476

    Article  ADS  Google Scholar 

  • Tanaboriboon Y, Hwa SS, Chor CH (1986) Pedestrian characteristics study in singapore. J Transp Eng 112:229–235

    Article  Google Scholar 

  • Teixeira T, Dublon G, Savvides A (2010) A survey of human-sensing: methods for detecting presence, count, location, track, and identity. ACM Comput Surv 5:1

    Google Scholar 

  • Templer JA (1992) The staircase: studies of hazards, falls, and safer design. The MIT Press, Cambridge, MA

    Google Scholar 

  • Thompson PA, Marchant EW Simulex; developing new computer modelling techniques for evaluation. In: Kashiwagi T (ed) Fire safety science – proceedings of the fourth international symposium (Interscience Communications Ltd, West Yard House, Guildford Grove, London, 1994). The International Association for Fire Safety Science, pp 613–624. ISBN:1-88627-900-4

    Google Scholar 

  • Tian W, Song W, Ma J, Fang Z, Seyfried A, Liddle J (2012) Experimental study of pedestrian behaviors in a corridor based on digital image processing. Fire Saf J 47:8–15

    Article  Google Scholar 

  • Tomoeda A, Yanagisawa D, Nishinari K (2015) Escape velocity of the leader in a queue of pedestrians. In: Traffic and granular flow 2013. Springer, Berlin/Heidelberg, pp 213–218

    Google Scholar 

  • Transportation Research Board (2000) Highway capacity manual. Technical report, Transportation Research Board, Washington, DC

    Google Scholar 

  • Tsuji Y (2003) Numerical simulation of pedestrian flow at high densities. In: Galea ER (ed) Pedestrian and evacuation dynamics 2003. CMS Press, London, p 27

    Google Scholar 

  • van Oosterhout T, Englebienne G, Kröse B (2015) RARE: people detection in crowded passages by range image reconstruction. Mach Vis Appl, 26(5):561–573

    Google Scholar 

  • von Sivers I, Köster G (2015) Dynamic stride length adaptation according to utility and personal space. Transp Res B Methodol 74:104–117

    Article  Google Scholar 

  • Waldau N, Gattermann P, Knoflacher H, Schreckenberg M (eds) (2006) Pedestrian and evacuation dynamics 2005. Springer, Berlin

    Google Scholar 

  • Wardrop J (1952) Some theoretical aspects of road traffic research. Proc Inst Civ Eng 1:325–362

    Google Scholar 

  • Weckman LS, Mannikkö S (1999) Evacuation of a theatre: exercise vs calculations. Fire Mater 23:357–361

    Article  Google Scholar 

  • Weidmann U (1993) Transporttechnik der Fussgänger. Technical report. Schriftenreihe des IVT Nr. 90, Institut für Verkehrsplanung,Transporttechnik, Strassen- und Eisenbahnbau, ETH Zürich

    Google Scholar 

  • Weidmann U, Kirsch U, Schreckenberg M (2014) (eds) Pedestrian and evacuation dynamics 2012 (Zürich, 2014). Springer, Berlin/Heidelberg

    Google Scholar 

  • Wolf D, Grassberger P (eds) (1996) Friction, arching, contact dynamics. World Scientific, Singapore

    Google Scholar 

  • Wong SC, Leung WL, Chan SH, Lam WHK, Yung NHC, Liu CY, Zhang P (2010) Bidirectional pedestrian stream model with oblique intersecting angle. J Transp Eng 136(3):234–242

    Article  Google Scholar 

  • Yamori K (1998) Going with the flow: micro-macro dynamics in the macrobehavioral patterns of pedestrian crowds. Psychol Rev 105:530–557

    Article  Google Scholar 

  • Yanagisawa D, Kimura A, Tomoeda A, Nishi R, Suma Y, Ohtsuka K, Nishinari K (2009) Introduction of frictional and turning function for pedestrian outflow with an obstacle. Phys Rev E 80:036110

    Article  ADS  Google Scholar 

  • Ye J, Chen X, Yang C, Wu J (2008) Walking behavior and pedestrian flow characteristics for different types of walking facilities. Transp Res Rec J Transp Res Board 2048:43–51

    Article  Google Scholar 

  • Zhang J, Klingsch W, Schadschneider A, Seyfried A (2011) Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions. J Stat Mech Theory Exp 2011:06004

    Article  Google Scholar 

  • Zhang J, Klingsch W, Rupprecht T, Schadschneider A, Seyfried A (2012a) Empirical study of turning and merging of pedestrian streams in T-junction. In: Fourth international symposium on agent-based modeling and simulation (ABModSim-4)

    Google Scholar 

  • Zhang J, Klingsch W, Schadschneider A, Seyfried A (2012b) Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram. J Stat Mech Theory Exp 2012:P02002

    Article  Google Scholar 

  • Zhang J, Klingsch W, Schadschneider A, Seyfried A (2013) Experimental study of pedestrian flow through a T-junction. In: Kozlov V et al (eds) Traffic and granular flow ’11. Springer, Heidelberg

    Google Scholar 

  • Ziemer V, Seyfried A, Schadschneider A (2016) Congestion dynamics in pedestrian single-file motion. In: Traffic and granular flow 2015

    Google Scholar 

  • Zuriguel I (2014) Invited review: clogging of granular materials in bottlenecks. Pap Phys 6:060014

    Article  Google Scholar 

  • Zuriguel I, Parisi DR, Hidalgo RC, Lozano C, Janda A, Gago PA, Peralta JP, Ferrer LM, Pugnaloni LA, Clément E, Maza D, Pagonabarraga I, Garcimartín A (2014) Clogging transition of many-particle systems flowing through bottlenecks. Sci Rep 4:7324

    Article  Google Scholar 

Books and Reviews

  • Ali S, Nishino K, Manocha D, Shah M (eds) (2013) Modeling, simulation and visual analysis of crowds: a multidisciplinary perspective. Springer, New York

    Google Scholar 

  • Collective dynamics – a multidisciplinary journal for pedestrian dynamics, vehicular traffic and other systems of self-driven particles. http://collective-dynamics.eu

  • DiNenno PJ (ed) (2002) SFPE handbook of fire protection engineering. National Fire Protection Association

    Google Scholar 

  • Knoop VL, Daamen W (eds) (2016) Traffic and granular flow ’15. Springer, Berlin/Heidelberg (see also previous issues of this conference series)

    MATH  Google Scholar 

  • Moeslund TB, Hilton A, Krüger V, Sigal L (eds) (2011) Visual analysis of humans – looking at people. Springer, London

    Google Scholar 

  • Online data archive of experiments studying the dynamics of pedestrians. http://ped.fz-juelich.de/dataarchive

  • Predtechenskii VM, Milinskii AI (1978) Planing for foot traffic flow in buildings, Amerint Publishing, New Delhi

    Google Scholar 

  • Schadschneider A, Chowdhury D, Nishinari K (2010) Stochastic transport in complex systems: from molecules to vehicles. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Schreckenberg M, Sharma SD (eds) (2002) Pedestrian and evacuation dynamics. Springer, Berlin

    Google Scholar 

  • Song W, Ma J, Fu L (eds) Pedestrian and evacuation dynamics 2016. Available from http://collective-dynamics.eu/index.php/cod/article/view/A11 (see also previous issues of this conference series)

  • Still K (2013) Introduction to Crowd Science. CRC Press, Boca Raton

    Google Scholar 

  • Timmermans H (ed) (2009) Pedestrian behavior – models, data collection and applications. Emerald, Bingley

    Google Scholar 

  • Tubbs JS, Meacham BJ (2007) Egress design solution – a guide to evacuation and crowd management planning. Wiley, Hoboken

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Schadschneider .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boltes, M., Zhang, J., Tordeux, A., Schadschneider, A., Seyfried, A. (2018). Empirical Results of Pedestrian and Evacuation Dynamics. In: Meyers, R. (eds) Encyclopedia of Complexity and Systems Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27737-5_706-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27737-5_706-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27737-5

  • Online ISBN: 978-3-642-27737-5

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics