Skip to main content

A Computability Challenge: Asymptotic Bounds for Error-Correcting Codes

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7160))

Abstract

Consider the set of all error-correcting block codes over a fixed alphabet with q letters. It determines a recursively enumerable set of points in the unit square with coordinates (R,δ):= (relative transmission rate, relative minimal distance). Limit points of this set form a closed subset, defined by R ≤ α q (δ), where α q (δ) is a continuous decreasing function called asymptotic bound. Its existence was proved by the author in 1981, but all attempts to find an explicit formula for it so far failed.

In this note I consider the question whether this function is computable in the sense of constructive mathematics, and discuss some arguments suggesting that the answer might be negative.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barg, A., Forney, G.D.: Random codes: minimum distances and error exponents. IEEE Transactions on Information Theory 48(9), 2568–2573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Brattka, V.: Plottable real functions and the computable graph theorem. SIAM J. Comput. 38(1), 303–328 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brattka, V., Miller, J.S., Nies, A.: Randomness and differentiability. arXiv:1104.4456

    Google Scholar 

  4. Brattka, V., Preser, G.: Computability on subsets of metric spaces. Theoretical Computer Science 305, 43–76 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brattka, V., Weihrauch, K.: Computability on subsets of Euclidean space I: closed and compact subsets. Theoretical Computer Science 219, 65–93 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Braverman, M., Cook, S.: Computing over the reals: foundations for scientific computing. Notices AMS 53(3), 318–329 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Braverman, M., Yampolsky, M.: Computability of Julia sets. Moscow Math. Journ. 8(2), 185–231 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Calude, C.S., Hertling, P., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theor. Comp. Sci. 255, 125–149 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles., I–III. C. R. Ac. Sci. Paris 240, 2478–2480, 241, 13–14, 151–153 (1955)

    Google Scholar 

  10. Manin, Y.I.: What is the maximum number of points on a curve over \(\textbf{F}_2\)? J. Fac. Sci. Tokyo, IA 28, 715–720 (1981)

    MATH  Google Scholar 

  11. Manin, Y.I.: Renormalization and computation I: motivation and background. Preprint math. QA/0904.4921

    Google Scholar 

  12. Manin, Y.I.: Renormalization and Computation II: Time Cut-off and the Halting Problem. Preprint math. QA/0908.3430

    Google Scholar 

  13. Manin, Y.I., Marcolli, M.: Error-correcting codes and phase transitions. arXiv:0910.5135

    Google Scholar 

  14. Manin, Y.I., Vladut, S.G.: Linear codes and modular curves. J. Soviet Math. 30, 2611–2643 (1985)

    Article  MATH  Google Scholar 

  15. Tsfasman, M.A., Vladut, S.G.: Algebraic-geometric Codes. Kluwer (1991)

    Google Scholar 

  16. Vladut, S.G., Nogin, D.Y., Tsfasman, M.A.: Algebraic Geometric Codes: Basic Notions. Mathematical Surveys and Monographs, vol. 139. American Mathematical Society, Providence (2007)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Manin, Y.I. (2012). A Computability Challenge: Asymptotic Bounds for Error-Correcting Codes. In: Dinneen, M.J., Khoussainov, B., Nies, A. (eds) Computation, Physics and Beyond. WTCS 2012. Lecture Notes in Computer Science, vol 7160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27654-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27654-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27653-8

  • Online ISBN: 978-3-642-27654-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics