Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 404))

Abstract

In a given treatment modality, the performance characteristics of the dialyzer determine the quantity and nature of uremic toxins removed from the patient’s blood, provided that an adequate treatment time and flow conditions are prescribed. Dialyzer selection may be the most difficult task facing a dialysis facility. Practitioners must understand the functions of a dialyzer, membrane biocompatibility, implications of poor technique, financial and quality implications of dialyzer reprocessing, and matching the patient to the dialyzer’s capabilities. Dialyzer membranes are a vital contributor to the success or failure of hemodialysis therapies and hemodialysis adequacy. Matching a dialyzer to patient requirements is crucial to meet the prescribed clearance goals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akizawa, T., Kinugasa, E., Ideura, T.: Classification of dialysismem-branes by performance. Contrib. Nephrol. 113, 25–31 (1995)

    Google Scholar 

  • Ambalavanan, S., Rabetoy, G., Cheung, A.: High efficiency and high flux hemodialysis. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney. Current Medicine, vol. 5, pp. 3.1–3.10, Philadelphia (1999)

    Google Scholar 

  • Ayli, M., Ayli, D., Azak, A., et al.: The effect of high-flux hemodialysis on dialysis-associated amyloidosis. Ren. Fail. 27(1), 31–34 (2005)

    Google Scholar 

  • Bagnasco, S.M.: The erythrocyte urea transporter UT-B. J. Membr. Biol. 212(2), 133–138 (2006)

    Article  Google Scholar 

  • Bhimani, J.P., Ouseph, R., Ward, R.A.: Effect of increasing dialysate flow rate on diffusive mass transfer of urea, phosphate and beta2-microglobulin during clinical haemodialysis. Nephrol. Dial. Transplant. 25(12), 3990–3995 (2010)

    Article  Google Scholar 

  • Collins, A.J., Keshaviah, P.: High-efficiency, high flux therapies in clinical dialysis. In: Nissenson, A.R. (ed.) Clinical Dialysis, 3rd edn., pp. 848–863 (1995)

    Google Scholar 

  • Collins, A.J.: High-flux, high-efficiency procedures. In: Henrich, W. (ed.) Principles and Practice of Hemodialysis, pp. 76–88. Appleton & Large, Norwalk (1996)

    Google Scholar 

  • Choong, L., Leypoldt, J.K., Cheung, A.: Dialyzer mass transfer-area co-efficients during clinical hemodialysis are dependent on both blood flow and dialysate flow rates (abstract). J. Am. Soc. Nephrol. 10, 189A (1999)

    Google Scholar 

  • Cheung, A.K., Levin, N.W., Greene, T., et al.: Effects of high-flux hemo-dialysis on clinical outcomes: results of the HEMO study. J. Am. Soc. Nephrol. 14(12), 3251–3263 (2003)

    Article  Google Scholar 

  • Cheung, A.K., Leypoldt, J.K.: The hemodialysis membranes: a historical perspective, current state and future prospect. Semin. Nephrol. 17(3), 196–213 (1997)

    Google Scholar 

  • Clark, W.R., Hamburger, R.H., Lysaght, M.J.: Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis. Kidney Int. 56(6), 2005–2015 (1999)

    Article  Google Scholar 

  • Clark, W.R., Shinaberger, J.H.: Effect of Dialysateside Mass Transfer Resistance on Small Solute Removal in Hemodialysis. Blood Purif. 18(4), 260–263 (2000)

    Article  Google Scholar 

  • Curtis, J.: Splitting fibers: understanding how dialyzer differences can impact adequacy. Nephrol. News Issues 5(6), 36–39 (2001)

    Google Scholar 

  • Daniels, I.D., Berlyne, G.M., Barth, R.H.: Blood flow rate and access recirculation in hemodialysis. Int. J. Artif. Organs 15(8), 470–474 (1992)

    Google Scholar 

  • Daugirdas, J.T., Blake, P.G., Ing, T.S.: Handbook of Dialysis, 4th edn. Lippincott, Williams and Wilkins, Philadelphia (2007)

    Google Scholar 

  • Daugirdas, J.T., Depner, T.A.: A nomogram approach to hemodialysis urea modeling. Am. J. Kidney Dis. 23(1), 33–40 (1994)

    Google Scholar 

  • Depner, T.A., Greene, T., Daugirdas, J.T., et al.: Dialyzer performance in the HEMO study: in vivo KoA and true blood flow determined from a model of cross-dialyzer urea extraction. ASAIO J. 50(1), 85–93 (2004)

    Article  Google Scholar 

  • Gotch, F.A., Panlilio, F., Sergeyeva, O., et al.: Effective diffusion volume flow rates (Qe) for urea, creatinine, and inorganic phosphorous (Qeu, Qecr, QeiP) during hemodialysis. Semin. Dial. 16(6), 474–476 (2003)

    Article  Google Scholar 

  • Granger, A., Vantard, G., Vantelon, J., Perrone, B.: A mathematical ap-proach of simultaneous dialysis and filtration (SDF). In: Proc. Eur. Soc. Artif. Organs, vol. 5, pp. 174–177 (1978)

    Google Scholar 

  • Hauk, M., Kuhlmann, M.K., Riegel, W., et al.: In vivo effects of dialys-ate flow rate on Kt/V in maintenance hemodialysis patients. Am. J. Kidney Dis. 35(1), 105–111 (2000)

    Article  Google Scholar 

  • Hamilton, R.W.: Principles of Dialysis: Diffusion, Convection, and Dialysis Machines. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney. Current Medicine, vol. 5, pp. 1.1–1.6. Blackwell Science, Philadelphia (1998)

    Google Scholar 

  • Henderson, L.W.: Biophysics of Ultrafiltration and Hemofiltration in Replacement of renal function by dialysis. In: Jacobs, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.), pp. 114–145. Kluwer Aca-demic Publisher (1996)

    Google Scholar 

  • Hoenich, N.A., Ronco, C.: Selecting a Dialyzer: Technical and Clinical Considerations. In: Nissenson, A.R., Fine, R.N. (eds.) Handbook of Dialysis Therapy, 4th edn., pp. 263–278. Hanley &Belfus, Inc., Philadelphia (2008)

    Chapter  Google Scholar 

  • Jaffrin, M.Y.: Convective mass transfer in hemodialysis. Artif. Organs 19(11), 1162–1171 (1995)

    Article  Google Scholar 

  • Keshaviah, P., Luehmann, D., Ilstrup, K., Collins, A.: Technical requirements for rapid high efficiency therapies. Artif. Organs 10(3), 189–194 (1986)

    Article  Google Scholar 

  • Khandpur, R.S.: Handbook of Biomedical Instrumentation, 2nd edn. McGraw-Hill Professional (2003)

    Google Scholar 

  • Klinkmann, H., Vienken, J.: Membranes for dialysis. Nephrol. Dial. Transplant. 10(suppl. 3), 39–45 (1995)

    Google Scholar 

  • Klinkmann, H., Ebbinghausen, H., Uhlenbusch, I., Vienken, J.: High flux dialysis, dialysate quality and backtransport. In: Bonomini, V. (ed.) Evolution in Dialysis Adequacy. Contr. Nephrol., vol. 103, pp. 89–97 (1993)

    Google Scholar 

  • Korwer, U., Schorn, E.B., Grassmann, A., Vienken, J.: Understanding Membranes and Dialyzers. PABST Science Publishers (2004)

    Google Scholar 

  • Leypoldt, J.K., Cheung, A.K., Chirananthavat, T., et al.: Hollow fiber shape alters solute clearances in high flux hemodialyzers. ASAIO J. 49(1), 81–87 (2003)

    Article  Google Scholar 

  • Leypoldt, J.K.: Solute fluxes in different treatment modalities. Nephrol. Dial. Transplant. 15(suppl. 1), 3–9 (2000)

    Article  Google Scholar 

  • Leypoldt, J.K., Cheung, A.: Effect of low dialysate flow rates on hemodialyzer mass transfer area coefficients for urea and creatinine. Home HD Int. 3, 51–54 (1999)

    Google Scholar 

  • Leypoldt, J.K., Cheung, A.K., Agodoa, L.Y., et al.: Hemodialyzer mass transfer-area coefficients for urea increase at high dialysate flow rates. Kidney Int. 51(6), 2013–2017 (1997)

    Article  Google Scholar 

  • Leypoldt, J.K.: Effect of Increasing Dialysate Flow Rate on KoA and Dialyzer Urea Clearance. Semin. Dial. 11(3), 195–196 (1998)

    Article  Google Scholar 

  • Lim, V.S., Flanigan, M.J., Fangman, J.: Effect of hematocrit on solute removal during high efficiency hemodialysis. Kidney Int. 37(6), 1557–1559 (1990)

    Article  Google Scholar 

  • Locatelli, F., Valderrabano, F., Hoenich, N., et al.: Progress in dialysis technology: membrane selection and patient outcome. Nephrol. Dial. Transplant. 15(8), 1133–1139 (2000)

    Article  Google Scholar 

  • Lonnemann, G., Sereni, L., Lemke, H.D., Tetta, C.: Pyrogen retention by highly permeable synthetic membranes during in vitro dialysis. Artif. Organs 25(12), 951–960 (2001)

    Article  Google Scholar 

  • MacLeod, A., Daly, C., Khan, I., et al.: Comparison of cellulose, modi-fied cellulose and synthetic membranes in the haemodialysis of patients with end-stage renal disease. Cochrane Database Syst. Rev. 3:CD003234 (2001)

    Google Scholar 

  • Mandolfo, S., Malberti, F., Imbasciati, E., Cogliati, P., Gauly, A.: Impact of blood and dialysate flow and surface on performance of new polysulfone hemodialysis dialyzers. Int. J. Artif. Organs 26(2), 113–120 (2003)

    Google Scholar 

  • Michaels, A.S.: Operating parameters and performance criteria for hemodialyzers and other membrane-separation devices. Trans. Am. Soc. Artif. Intern. Organs 12, 387–392 (1966)

    Google Scholar 

  • Ofsthun, N.J., Zydney, A.L.: Importance of convection in artificial kid-ney treatment. In: Maeda, K., Shinzato, T. (eds.) Effective Hemodiafiltration: New Methods, pp. 54–70. Karger Publisher, Basel (1994)

    Google Scholar 

  • Ofsthun, N.J., Leypoldt, J.K.: Ultrafiltration and backfiltration during hemodialysis. Artif. Organs 19(11), 1143–1161 (1995)

    Article  Google Scholar 

  • Okada, M., Takesawa, S., Watanabe, T., et al.: Effects of zeta potential on the permeability of dialysis membranes to inorganic phosphate. ASAIO Trans. 35(3), 320–322 (1989)

    Article  Google Scholar 

  • Ouseph, R., Ward, R.A.: Increasing dialysate flow rate increases dialyzer urea mass transfer-area coefficients during clinical use. Am. J. Kidney Dis. 37(2), 316–320 (2001)

    Article  Google Scholar 

  • Palmer, B.F.: The Dialysis Prescription and Urea Modeling. In: Schrier, R.W. (ed.) Atlas of Diseases of the Kidney, Current Medicine, vol. 5, pp. 6.1–6.8. Blackwell Science, Philadelphia (1998)

    Google Scholar 

  • Ronco, C., Brendolan, A., Crepaldi, C., et al.: Blood and dialysate flow distributions in hollow fiber hemodialyzers analyzed by computerized helical scanning technique. J. Am. Soc. Nephrol. 13, S53–S61 (2002)

    Google Scholar 

  • Ronco, C., Ghezzi, P.M., Metry, G., et al.: Effects of hematocrit and blood flow distribution on solute clearance in hollow fiber hemodialyzers. Nephron 89(3), 243–250 (2001)

    Article  Google Scholar 

  • Ronco, C., Heifetz, A., Fox, K., et al.: Beta 2-microglobulin removal by synthetic dialysis membranes. Mechanisms and kinetics of the molecule. Int. J. Artif. Organs 20, 136–143 (1997)

    Google Scholar 

  • Ronco, C.: Backfiltration in clinical dialysis: nature of the phenomenon, mechanisms and possible solutions. Int. J. Artif. Organs 13, 11–21 (1990)

    Google Scholar 

  • Sargent, J.A., Gotch, F.A.: Principles and biophysics of dialysis in Re-placement of renal function by dialysis. In: Jacob, C., Kjellstrand, C.M., Koch, K.M., Winchester, J.F. (eds.), 4th edn., pp. 188–230. Kluwer Academic Publiher, Dordrecht (1996)

    Google Scholar 

  • Waniewski, J., Werynski, A., Ahrenholz, P., et al.: Theoretical basis and experimental verification of the impact of ultrafiltration on dialyzer clearance. Artif. Organs 15(2), 70–77 (1991)

    Article  Google Scholar 

  • Werynski, A.: Evaluation of the impact of ultrafiltration on dialyzer clearance. Artif. Organs 3(2), 140–142 (1979)

    Article  Google Scholar 

  • Woods, H.F., Nandakumar, M.: Improved outcome for haemodialysis patients treated with high-flux membranes. Nephrol. Dial. Transplant. 15, 36–42 (2000)

    Article  Google Scholar 

  • Yamamoto, K., Matsukawa, H., Yakushiji, T., et al.: Technical evaluation of dialysate flow in a newly designed dialyzer. ASAIO J. 53(1), 36–40, 14 (2007)

    Article  Google Scholar 

  • Yamamoto, K., Matsuda, M., Hirano, A., et al.: Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets. Artif. Organs 33(6), 481–486 (2009)

    Article  Google Scholar 

  • Zucchelli, P., Santoro, A.: Inorganic phosphate removal during different dialytic procedures. Int. J. Artif. Organs 10(3), 173–178 (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Taher Azar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Azar, A.T. (2013). Dialyzer Performance Parameters. In: Azar, A. (eds) Modelling and Control of Dialysis Systems. Studies in Computational Intelligence, vol 404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27458-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27458-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27457-2

  • Online ISBN: 978-3-642-27458-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics