Summary
Business Intelligence (BI) solutions allow decision makers to query, understand, and analyze business data in order to make better decisions. However, as the technology and society evolve, faster and better informed decisions are required. Nowadays, it is not enough to use only the information from the own organization and making isolated decisions, but rather requiring also to include information present in the web like opinions or information about competitors, while using collective intelligence, collaborating through social networks, and supporting the BI system with cloud computing. In response to this situation, a vision of a new generation of BI, BI 2.0, based on the evolution of the web and the emerging technologies, arises. However, researchers differ in their vision of this BI evolution. In this paper, we provide an overview of the aspects proposed to be included in BI 2.0. We describe which success factors and technologies have motivated each aspect. Finally, we review how tool developers are including these new features in the next generation of BI solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gartner Group: Gartner Group BI Revenue Analysis (2009), http://www.gartner.com/it/page.jsp?id=1357514
Zorrilla, M., Mazón, J.N., Garrigós, I., Daniel, F., Trujillo, J. (eds.): Business Intelligence Applications and the Web: Models, Systems and Technologies. IGI Global (2011)
Bhowmick, S., Madria, S., Ng, W.K., Lim, E.: Web warehousing: Design and issues. In: Kambayashi, Y., Lee, D.-L., Lim, E.-p., Mohania, M., Masunaga, Y. (eds.) ER Workshops 1998. LNCS, vol. 1552, pp. 93–105. Springer, Heidelberg (1999)
Essaidi, M., Osmani, A.: Business Intelligence-as-a-Service: Studying the Functional and the Technical Architectures [2]
Thiele, M., Lehner, W.: Real-Time BI and Situational Analysis [2]
Berthold, H., Rösch, P., Zöller, S., Wortmann, F., Carenini, A., Campbell, S.: Towards Ad-hoc and Collaborative Business Intelligence [2]
Greg, N.: Business Intelligence 2.0: Are we there yet?, http://support.sas.com/resources/papers/proceedings10/040-2010.pdf
2nd International Workshop on Business intelligencE and the WEB, http://gplsi.dlsi.ua.es/congresos/beweb11/
International Workshop on Business intelligencE and the WEB, http://gplsi.dlsi.ua.es/congresos/beweb10/
Golfarelli, M., Mandreolib, F., Penzoa, W., Rizzi, S., Turricchia, E.: BIN: Business Intelligence Networks [2]
Kimball, R.: The data warehouse toolkit. Wiley-India (2009)
Inmon, W.H.: Building the data warehouse. Wiley-India (2009)
Giorgini, P., Rizzi, S., Garzetti, M.: GRAnD: A goal-oriented approach to requirement analysis in data warehouses. Decision Support Systems 45(1), 4–21 (2008)
Abelló, A., Samos, J., Saltor, F.: YAM2: a multidimensional conceptual model extending UML. Information Systems 31(6), 541–567 (2006)
Luján-Mora, S., Trujillo, J., Song, I.-Y.: A UML profile for multidimensional modeling in data warehouses. Data & Knowledge Engineering 59(3), 725–769 (2006)
Sapia, C., Blaschka, M., Höfling, G., Dinter, B.: Extending the E/R model for the multidimensional paradigm. Advances in Database Technologies (2004)
Tryfona, N., Busborg, F., Borch Christiansen, J.: starER: A conceptual model for data warehouse design. In: Proceedings of the 2nd ACM International Workshop on Data warehousing and OLAP, pp. 3–8. ACM (1999)
Mazón, J.N., Pardillo, J., Trujillo, J.: A Model-Driven Goal-Oriented Requirement Engineering Approach For Data Warehouses. In: Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 56–71. Springer, Heidelberg (2007)
Yu, E.S.K.: Modelling strategic relationships for process reengineering. PhD thesis, University of Toronto, Toronto, Ont, Canada (1995)
Mazón, J.-N., Trujillo, J.: An MDA approach for the development of data warehouses. Decision Support Systems 45(1), 41–58 (2008)
Mazón, J., Trujillo, J.: A hybrid model driven development framework for the multidimensional modeling of data warehouses. ACM SIGMOD Record 38(2), 12–17 (2009)
Maté, A., Trujillo, J.: A Trace Metamodel Proposal Based on the Model Driven Architecture Framework for the Traceability of User Requirements in Data Warehouses. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 123–137. Springer, Heidelberg (2011)
Betanyeb, F., Maïz, N., Mahboubi, H., Favre, C., Loudcher, S., Harbi, N., Bousaïd, O., Darmont, J.: Innovative Approaches for Efficiently Warehousing Complex Data from the Web [2]
Ferrández, A., Peral, J.: The benefits of the interaction between data warehouses and question answering. In: Proceedings of the 2010 EDBT/ICDT Workshops, p. 15. ACM (2010)
Marotta, A., González, L., Etcheverry, L., Rienzi, B., Ruggia, R., Serra, F., Martirena, E.: Quality Management in Web Warehouses [2]
Rizzi, S.: New Frontiers in Business Intelligence: Distribution and Personalization. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 23–30. Springer, Heidelberg (2010)
Armbrust, M., et al.: Above the clouds: A berkeley view of cloud computing. Technical report, EECS Department, University of California, Berkeley, UCB/EECS-2009-28 (February 2009)
Gruber, T.: Collective knowledge systems: Where the social web meets the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web 6(1), 4–13 (2008)
Howe, J.: Crowdsourcing: Why the power of the crowd is driving the future of business. Crown Business (2009)
Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. International Journal on the Semantic Web and Information Systems 5(3), 1–22 (2009)
Berlanga, R., Romero, O., Simitsis, A., Nebot, V., Pedersen, T.B., Abelló, A., Aramburu, M.J.: Semantic Web Technologies for Business Intelligence [2]
Balahur, A., Boldrini, E., Montoyo, A., Mártinez-Barco, P.: OpAL: a System for Mining Opinion from Text for Business Applications [2]
Golfarelli, M., Rizzi, S., Cella, I.: Beyond data warehousing: what’s next in business intelligence? In: Proceedings of the 7th ACM international workshop on Data warehousing and OLAP, pp. 1–6. ACM (2004)
O’Reilly, T.: What is Web 2.0: Design patterns and business models for the next generation of software. Communications and Strategies 65, 17 (2007)
Byung-Kwon, P., Song, I.Y.: Incorporating Text OLAP in Business Intelligence [2]
Pallotta, V., Vrieling, L., Delmonte, R.: Interaction Business Analytics [2]
IBM: Cognos Business Intelligence (June 2011)
Microsoft: Microsoft Business Intelligence (June 2011)
Microstrategy: MicroStrategy Business Intelligence (June 2011)
Pentaho: Pentaho Business Intelligence (June 2011)
Penteo: Tendencias en el uso de BI en España (June 2011)
Berkhin, P.: Survey of clustering data mining techniques. Grouping Multidimensional Data: Recent Advances in Clustering, pp. 25–71 (2006)
Oracle: A Technical Overview of the Oracle Exadata Database Machine and Exadata Storage Server. White Paper (April 2011)
IBM: The Netezza Data Appliance Architecture: A Platform for High Performance Data Warehousing and Analytics. White Paper (January 2011)
Pedersen, T.B.: How Is BI Used in Industry?: Report from a Knowledge Exchange Network. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 179–188. Springer, Heidelberg (2004)
Weiss, S., Indurkhya, N.: Predictive data mining: a practical guide. Morgan Kaufmann (1998)
Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.: Business process intelligence. Computers in Industry 53(3), 321–343 (2004)
Friedrich, F., Mendling, J., Puhlmann, F.: Process Model Generation from Natural Language Text. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 482–496. Springer, Heidelberg (2011)
SAS: SAS Business Intelligence (June 2011)
SAP AG: SAP Business Intelligence (June 2011)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Trujillo, J., Maté, A. (2012). Business Intelligence 2.0: A General Overview. In: Aufaure, MA., Zimányi, E. (eds) Business Intelligence. eBISS 2011. Lecture Notes in Business Information Processing, vol 96. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27358-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-27358-2_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-27357-5
Online ISBN: 978-3-642-27358-2
eBook Packages: Computer ScienceComputer Science (R0)