Skip to main content

The Challenges of Low Temperature in the Evolution of Bacteria

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 1

Part of the book series: From Pole to Pole ((POLE))

Abstract

It is currently recognised that extreme environments, by virtue of their extension and often unique features, are the most important part of the Earth’s biosphere. Their study is still limited and is often hampered by logistic constraints; however, extreme environments are now becoming more and more accessible thanks to technological progress and research on adaptations to extreme conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ayala-Del-Río HL, Chain PS, Grzymski JJ, Ponder MA, Ivanova N, Bergholz PW, Di Bartolo G, Hauser L, Land M, Bakermans C, Rodrigues D, Klappenbach J, Zarka D, Larimer F, Richardson P, Murray A, Thomashow M, Tiedje JM (2010) The genome sequence of psychrobacter arcticus 273–4, a psychroactive siberian permafrost bacterium, reveals mechanisms for adaptation to low temperature growth. Appl Environ Microbiol 76:2304–2312

    Article  Google Scholar 

  • Carpenter JF, Crowe JH (1988) The mechanism of cryoprotection of proteins by solutes. Cryobiol 25:244–255

    Article  CAS  Google Scholar 

  • Casanueva A, Tuffin M, Craig C, Cowan DA (2010) Molecular adaptations to psychrophily: the impact of “omic” technologies. Trends Microbiol 18:374–381

    Article  CAS  Google Scholar 

  • Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotech 13:253–261

    Article  CAS  Google Scholar 

  • Cavicchioli R, Thomas T, Curmi PM (2000) Cold stress response in archaea. Extremophiles 4:321–331

    Article  CAS  Google Scholar 

  • Chauhan S, Shivaji S (1994) Growth and pigmentation in Sphingobacterium antarcticus, a psychrothrophic bacterium from Antarctica. Polar Biol 15:215–219

    Google Scholar 

  • Chintalapati S, Kiran MD, Shivaji S (2004) Role of membrane lipid fatty acids in cold adaptation. Cell Mol Biol (Noisy-le-grand) 50:631–642

    CAS  Google Scholar 

  • D’Amico S, Collins T, Marx JC, Feller G, Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7:385–389

    Article  Google Scholar 

  • Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309

    Article  CAS  Google Scholar 

  • Deming JW, Junge K (2005) Colwellia. In: Staley GT, Benner DJ, Krieg NR, Garrity GM (eds) The proteobacteria, part B, bergey’s manual of systematic bacteriology, vol 2, 2nd edn. Springer, New York, pp 447–454

    Google Scholar 

  • Duplantis BN, Osusky M, Schmerk CL, Ross DR, Bosio CM, Nano FE (2010) Essential genes from Arctic bacteria used to construct stable, temperature-sensitive bacterial vaccines. Proc Natl Acad Sci USA 107:3456–13460

    Article  Google Scholar 

  • Eriksson S, Hurme R, Rhen M (2002) Low temperature sensors in bacteria. Phil Trans R Soc Lond B 357:887–893

    Article  CAS  Google Scholar 

  • Feller G (2010) Protein stability and enzyme activity at extreme biological temperatures. J Phys Condens Matter 22:323101

    Article  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  Google Scholar 

  • Ferrer M, Chernikova TN, Yakimov M, Timmis KN, Golyshin PN (2003) Chaperonins govern growth of Escherichia coli at low temperatures. Nat Biotechnol 21:1266–1267

    Article  CAS  Google Scholar 

  • Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254

    Article  CAS  Google Scholar 

  • Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42

    Article  CAS  Google Scholar 

  • Giordano D, Parrilli E, Dettaï A, Russo R, Barbiero G, Marino G, Lecointre G, di Prisco G, Tutino ML, Verde C (2007) The truncated hemoglobins in the Antarctic psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125. Gene 398:69–77

    Article  CAS  Google Scholar 

  • Giordano D, Russo R, Ciaccio C, Howes BD, di Prisco G, Smulevich G, Marden MC, Hui Bon Hoa G-H, Coletta M, Verde C (2011) Ligand- and proton-linked conformational changes of the ferrous 2/2 hemoglobin of Pseudoalteromonas haloplanktis TAC125. IUBMB Life 63:566–573

    Article  CAS  Google Scholar 

  • Howes BD, Giordano D, Boechi L, Russo R, Mucciacciaro S, Ciaccio C, Sinibaldi F, Fittipaldi M, Martì MA, Estrin DA, di Prisco G, Coletta M, Verde C, Smulevich G (2011) The peculiar heme pocket of the 2/2 hemoglobin of cold adapted Pseudoalteromonas haloplanktis TAC125. J Biol Inorg Chem 16:299–311

    Article  CAS  Google Scholar 

  • Jagannadham MV, Rao VJ, Shivaji S (1991) The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: purification, structure, and interaction with synthetic membranes. J Bacteriol 173:7911–7917

    CAS  Google Scholar 

  • Krembs C, Eicken H, Junge K, Deming JW (2002) High concentrations of exopolymeric substances in Arctic winter sea ice: implications for the polar ocean carbon cycle and cryoprotection of diatoms. Deep-Sea Res A 49:2163–2181

    Article  CAS  Google Scholar 

  • Kumar S, Nussinov R (2004) Different roles of electrostatic in heat and in cold: adaptation by citrate synthase. Chem-BioChem 5:280–290

    CAS  Google Scholar 

  • Lama A, Pawaria S, Bidon-Chanal A, Anand A, Gelpí JL, Arya S, Martí M, Estrin DA, Luque FJ, Dikshit KL (2009) Role of Pre-A motif in nitric oxide scavenging by truncated hemoglobin, HbN, of Mycobacterium tuberculosis. J Biol Chem 284:14457–14468

    Article  CAS  Google Scholar 

  • Marx JC, Blaise V, Collins T, D’Amico S, Delille D, Gratia E, Hoyoux A, Huston AL, Sonan G, Feller G, Gerday C (2004) A perspective on cold enzymes: current knowledge and frequently asked questions. Cell Mol Biol Noisy-le-grand 50:643–655

    CAS  Google Scholar 

  • Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D’Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EP, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A (2005) Coping with cold: the genome of the versatile marine Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 15:1325–1335

    Article  Google Scholar 

  • Methé BA, Nelson KE, Deming JW, Momen B, Melamud E, Zhang X, Moult J, Madupu R, Nelson WC, Dodson RJ, Brinkac LM, Daugherty SC, Durkin AS, DeBoy RT, Kolonay JF, Sullivan SA, Zhou L, Davidsen TM, Wu M, Huston AL, Lewis M, Weaver B, Weidman JF, Khouri H, Utterback TR, Feldblyum TV, Fraser CM (2005) The psychrophilic lifestyle as revealed by the genome sequence of Colwellia psychrerythraea 34H through genomic and proteomic analyses. Proc Natl Acad Sci USA 102:10913–10918

    Article  Google Scholar 

  • Moline MA, Karnovsky NJ, Brown Z, Divoky GJ, Frazer TK, Jacoby CA, Torres JJ, Fraser WR (2008) High latitude changes in ice dynamics and their impact on polar marine ecosystems. Annu NY Acad Sci 1134:267–319

    Article  Google Scholar 

  • Motohashi K, Watanabe Y, Yohda M, Yoshida M (1999) Heat-inactivated proteins are rescued by the DnaK.J-GrpE set and ClpB chaperones. Proc Natl Acad Sci USA 96:7184–7189

    Article  CAS  Google Scholar 

  • Murray AE, Grzymski JJ (2007) Diversity and genomics of Antarctic marine microorganisms. Phil Trans R Soc B 362:2259–2271

    Article  CAS  Google Scholar 

  • Nicoletti FP, Comandini A, Bonamore A, Boechi L, Boubeta F, Feis A, Smulevich G, Boffi A (2010) Sulfide binding properties of truncated hemoglobins. Biochemistry 49:2269–2278

    Article  CAS  Google Scholar 

  • Parrilli E, Giuliani M, Giordano D, Russo R, Marino G, Verde C, Tutino ML (2010) The role of a 2-on-2 haemoglobin in oxidative and nitrosative stress resistance of Antarctic Pseudoalteromonas haloplanktis TAC125. Biochimie 92:1003–1009

    Article  CAS  Google Scholar 

  • Pegg DE (2007) Principles of cryopreservation. Meth Mol Biol 368:39–57

    Article  CAS  Google Scholar 

  • Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M (2000) A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J 19:2424–2434

    Article  CAS  Google Scholar 

  • Piette F, D’Amico S, Mazzuchelli G, Danchin A, Leprince P, Feller G (2011) Life in the cold: a proteomic study of cold-repressed proteins in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Appl Environ Microbiol 77:3881–3883

    Article  Google Scholar 

  • Piette F, D’Amico S, Struvay C, Mazzuchelli G, Renaut J, Tutino ML, Danchin A, Leprince P, Feller G (2010) Proteomics of life at low temperatures: trigger factor is the primary chaperone in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mol Microbiol 76:120–132

    Article  CAS  Google Scholar 

  • Poole RK, Anjum MF, Membrillo-Hernàndez J, Kim SO, Hughes MN, Stewart V (1996) Nitric oxide, nitrite, and Fnr regulation of hmp (flavohemoglobin) gene expression in Escherichia coli K-12. J Bacteriol 178:5487–5492

    CAS  Google Scholar 

  • Rabus R, Ruepp A, Frickey T, Rattei T, Fartmann B, Stark M, Bauer M, Zibat A, Lombardot T, Becker I, Amann J, Gellner K, Teeling H, Leuschner WD, Glöckner FO, Lupas AN, Amann R, Klenk HP (2004) The genome of Desulfotalea psychrophila, a sulfate-reducing bacterium from permanently cold Arctic sediments. Environ Microbiol 6:887–902

    Article  CAS  Google Scholar 

  • Ray MK, Kumar GS, Janiyani K, Kannan K, Jagtap P, Basu MK, Shivaji S (1998) Adaptation to low temperature and regulation of gene expression in Antarctic psychrotrophic bacteria. J Biosci 23:423–435

    Article  CAS  Google Scholar 

  • Riley M, Staley JT, Danchin A, Wang TZ, Brettin TS, Hauser LJ, Land ML, Thompson LS (2008) Genomics of an extreme psychrophile, psychromonas ingrahamii. BMC Genomics 9:210

    Article  Google Scholar 

  • Rodrigues D, Tiedje M (2008) Coping with our cold planet. Appl Environ Microbiol 74:1677–1686

    Article  CAS  Google Scholar 

  • Rodrigues D, Ivanova N, He Z, Huebner M, Zhou J, Tiedje M (2008) Architecture of thermal adaptation in an Exiguobacterium sibiricum strain isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC Genomics 9:547

    Article  Google Scholar 

  • Russell NJ (1998) Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. Adv Biochem Eng Biotechnol 61:1–21

    CAS  Google Scholar 

  • Russell NJ (2007) Psychrophiles: membrane adaptations. In physiology and biochemistry of extremophiles. In: Gerday C, Glansdorff N (eds) ASM Press, Washington, pp 155–164

    Google Scholar 

  • Russo R, Giordano D, Riccio A, di Prisco G, Verde C (2010) Cold-adapted bacteria and the globin case study in the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125. Mar Gen 3:125–131

    Article  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    Article  CAS  Google Scholar 

  • Saunders NF, Thomas T, Curmi PM, Mattick JS, Kuczek E, Slade R, Davis J, Franzmann PD, Boone D, Rusterholtz K, Feldman R, Gates C, Bench S, Sowers K, Kadner K, Aerts A, Dehal P, Detter C, Glavina T, Lucas S, Richardson P, Larimer F, Hauser L, Land M, Cavicchioli R (2003) Mechanisms of thermal adaptation revealed from the genomes of the Antarctic Archaea Methanogenium frigidum and Methanococcoides burtonii. Gen Res 13:1580–1588

    Article  CAS  Google Scholar 

  • Shivaji S, Prakash Jogadhenu SS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  CAS  Google Scholar 

  • Tehei M, Franzetti B, Madern D, Ginzburg m, Ginzburg BZ, Giudici-Orticoneìi MT, Bruschi M, Zaccai G (2004) Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering. EMBO Reports 5:66–70

    Article  CAS  Google Scholar 

  • Verde C, Giordano D, Russo R, Riccio A, Vergara A, Mazzarella L, di Prisco G (2009) Hemoproteins in the cold. Mar Gen 2:67–73

    Article  CAS  Google Scholar 

  • Vinogradov SN, Hoogewijs D, Bailly X, Arredondo-Peter R, Guertin M, Gough J, Dewilde S, Moens L, Vanfleteren JR (2005) Three globin lineages belonging to two structural classes in genomes from the three kingdoms of life. Proc Natl Acad Sci USA 102:11385–11389

    Article  CAS  Google Scholar 

  • Vinogradov S, Moens L (2008) Diversity of globin function: enzymatic, transport, storage, and sensing. J Biol Chem 283:8773–8777

    Article  CAS  Google Scholar 

  • Wada H, Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30:971–978

    CAS  Google Scholar 

  • Watanabe YH, Yoshida M (2004) Trigonal DnaK-DnaJ complex versus free DnaK and DnaJ; heat stress converts the former to the latter and only the latter can do disaggregation in cooperation with ClpB. J Biol Chem 279:15723–15727

    Article  CAS  Google Scholar 

  • Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 227:871–874

    Article  Google Scholar 

  • Zheng S, Ponder MA, Shih JY, Tiedje JM, Thomashow MF, Lubman DM (2007) A proteomic analysis of psychrobacter arcticus 273–4 adaptation to low temperature and salinity using a 2-D liquid mapping approach. Electrophoresis 28:467–488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is financially supported by the Italian National Programme for Antarctic Research (PNRA). It is in the framework of the SCAR programme Evolution and Biodiversity in the Antarctic (EBA), the project CAREX (Coordination Action for Research Activities on Life in Extreme Environments), European Commission FP7 call ENV.2007.2.2.1.6. DG and RR acknowledge CNR (for Short-Term Mobility fellowships) and CAREX (for Transfer of Knowledge grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cinzia Verde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

di Prisco, G., Giordano, D., Russo, R., Verde, C. (2012). The Challenges of Low Temperature in the Evolution of Bacteria. In: di Prisco, G., Verde, C. (eds) Adaptation and Evolution in Marine Environments, Volume 1. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27352-0_10

Download citation

Publish with us

Policies and ethics