Skip to main content

Pole-to-Pole Gene Flow in Protozoan Ciliates

  • Chapter
  • First Online:
Adaptation and Evolution in Marine Environments, Volume 2

Part of the book series: From Pole to Pole ((POLE))

Abstract

Microorganisms represent the smallest but arguably most important component of the ocean life. They are essential to all nutrient cycles because they form the bottom of the marine food chain and outnumber all other marine species by orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agatha S, Wilbert N, Spindler M, Elbrächter M (1990) Euplotide ciliates in sea ice of the Weddell-Sea (Antarctica). Acta Protozool 29:221–228

    Google Scholar 

  • Agatha S, Spindler M, Wilbert N (1993) Ciliated protozoa (ciliophora) from Arctic sea ice. Acta Protozool 32:261–268

    Google Scholar 

  • Alimenti C, Vallesi A, Pedrini P, Wüthrich K, Luporini P (2009) Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate Euplotes. IUBMB Life 61:838–845

    Article  CAS  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568

    Article  CAS  Google Scholar 

  • Bernhard D, Stechmann A, Foissner W, Ammermann D, Hehn M, Schlegel M (2001) Phylogenetic relationships within the class Spirotrichea (Ciliophora) inferred from small subunit rRNA gene sequences. Mol Phylogenet Evol 21:86–92

    Article  CAS  Google Scholar 

  • Brandt A, Gooday AJ, Brandao SN et al (2007) First insight into the biodiversity and biogeography of the southern ocean deep sea. Nature 447:307–311

    Article  CAS  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Article  Google Scholar 

  • Casteleyn G, Adams NG, Vanormelingen P, Debeer AE, Sabbe K, Vyverman W (2009) Natural hybrids in the marine diatom Pseudo-nitzschia pungens (Bacillariophyceae): genetic and morphological evidence. Protist 160:343–354

    Article  CAS  Google Scholar 

  • Corliss JO, Snyder RA (1986) A preliminary description of several new ciliates from the Antarctica, including Cohnilembus grassei n. sp. Protistologica 22:39–46

    Google Scholar 

  • Crame JA (1993) Bipolar mollusks and their evolutionary implication. J Biogeogr 20:145–161

    Article  Google Scholar 

  • D’Alelio D, Amato A, Kooistra WHCF, Procaccini G, Casotti R, Montresor M (2009) Internal transcribed spacer polymorphism in Pseudo-nitzschia multistriata (Bacillariophyceae) in the Gulf of Naples: recent divergence or intraspecific hybridization? Protist 160:9–20

    Article  Google Scholar 

  • Darling KF, Wade CM, Steward IA, Kroon D, Dingle R, Leigh Brown AJ (2000) Molecular evidence for genetic mixing of Arctic and Antarctic subpolar populations of planktonic foraminifers. Nature 405:43–47

    Article  CAS  Google Scholar 

  • Di Giuseppe G, Erra F, Dini F, Alimenti C, Vallesi A, Pedrini B, Wüthrich K, Luporini P (2011) Antarctic and Arctic populations of the ciliate Euplotes nobilii show common pheromone-mediated cell–cell signaling and cross-mating. Proc Natl Acad Sci USA 108:3181–3186

    Article  Google Scholar 

  • Dini F, Nyberg D (1993) Sex in ciliates. In: Jones JG (ed) Advances in microbial ecology, vol 13. Plenum Press, New York, pp 85–153

    Chapter  Google Scholar 

  • Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320:1034–1039

    Article  CAS  Google Scholar 

  • Felici A, Alimenti C, Ortenzi C, Luporini P (1999) Purification and initial characterization of two pheromones from the marine Antarctic ciliate, Euplotes nobilii. Ital J Zool 66:355–360

    Article  CAS  Google Scholar 

  • Kepner RL Jr, Wharton RA Jr, Coats DW (1999) Ciliated protozoa of two Antarctic lakes: analysis by quantitative protargol staining and examination of artificial substrates. Polar Biol 21:285–294

    Article  Google Scholar 

  • Lindberg DR (1991) Marine biotic interchange between the northern and the southern hemispheres. Paleobiology 17:308–324

    Google Scholar 

  • Luporini P, Alimenti C, Ortenzi C, Vallesi A (2005) Ciliate mating types and their specific protein pheromones. Acta Protozool 44:89–101

    CAS  Google Scholar 

  • Montresor M, Lovejoy C, Orsini L, Procaccini G, Roy S (2003) Bipolar distribution of the cyst-forming dinoflagellate Polarella glacialis. Polar Biol 26:186–194

    Google Scholar 

  • Nielsen R (2000) Estimation of population parameters and recombination rates using single nucleotide polymorphisms. Genetics 154:931–942

    CAS  Google Scholar 

  • Pawlowski J, Bolivar I, Fahrni JF, de Vargas C, Gouy M (1997) Extreme differences in rates of molecular evolution of foraminifera revealed by comparison of ribosomal DNA sequences and the fossil record. Mol Biol Evol 14:498–505

    Article  CAS  Google Scholar 

  • Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096

    Article  CAS  Google Scholar 

  • Petz W (2004) Ciliate biodiversity in Antarctic and Arctic freshwater habitats—a bipolar comparison. Eur J Protistol 39:491–494

    Article  Google Scholar 

  • Petz W (2005) Ciliates. In: Scott FJ, Marchant HJ (eds) Antarctic marine protists. Australian Biological Resources Study, Canberra, pp 347–448

    Google Scholar 

  • Petz W, Song W, Wilbert N (1995) Taxonomy and ecology of the ciliate fauna (Protozoa, Ciliophora) in the endopagial and pelagial of the Weddell Sea, Antarctica. Stapfia 40:1–223

    Google Scholar 

  • Petz W, Valbonesi A, Schiftner U, Quesada A, Cynan Ellis-Evans J (2007) Ciliate biogeography in Antarctic and Arctic freshwater ecosystems: endemism or global distribution of species? FEMS Microbiol Ecol 59:396–408

    Article  CAS  Google Scholar 

  • Phadke SS, Zufall RA (2009) Rapid diversification of mating systems in ciliates. Biol J Linnean Soc 98:187–197

    Article  Google Scholar 

  • Sannucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203

    Article  Google Scholar 

  • Valbonesi A, Luporini P (1990a) Description of two new species of Euplotes and Euplotes rariseta from Antarctica. Polar Biol 11:47–53

    Article  Google Scholar 

  • Valbonesi A, Luporini P (1990b) A new marine species of Euplotes (Ciliophora, Hypotrichida) from Antarctica. Bull Br Mus Nat Hist Zool 56:57–61

    Google Scholar 

  • Valbonesi A, Luporini P (1993) Biology of Euplotes focardii, an Antarctic ciliate. Polar Biol 13:489–493

    Article  Google Scholar 

  • Vallesi A, Di Giuseppe G, Dini F, Luporini P (2008) Pheromone evolution in the protozoan ciliate, Euplotes: the ability to synthesize diffusibile forms is ancestral and secondarily lost. Mol Phylogenet Evol 47:439–442

    Article  CAS  Google Scholar 

  • Wilbert N, Song W (2005) New contributions to the marine benthic ciliates from the Antarctic area, including description of seven new species (Protozoa, Ciliophora). J Nat Hist 39:935–973

    Article  Google Scholar 

  • Wilbert N, Song W (2008) A further study on littoral ciliates (Protozoa, Ciliophora) near King George Island, Antarctica, with description of a new genus and seven new species. J Nat Hist 42:979–1012

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Programma Nazionale di Ricerche in Antartide (PNRA) and Dr. Martha Dunbar for helpful suggestions in the English revision of the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graziano Di Giuseppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Di Giuseppe, G., Dini, F., Alimenti, C., Vallesi, A., Luporini, P. (2013). Pole-to-Pole Gene Flow in Protozoan Ciliates. In: Verde, C., di Prisco, G. (eds) Adaptation and Evolution in Marine Environments, Volume 2. From Pole to Pole. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27349-0_4

Download citation

Publish with us

Policies and ethics