Skip to main content

Measurement of H2O2 Broadening Parameters near 7.8 μm with a Shock Tube

  • Conference paper
28th International Symposium on Shock Waves

Introduction

Hydrogen peroxide is an important intermediate species in the combustion of hydrogen and hydrocarbon-based fuels at low temperatures (850-1200K) and elevated pressures. Part of the reason for the importance of H2O2 is that the molecule produces a considerable amount of hydroxyl radicals prior to the ignition event, so it is important to have a good understanding of the kinetic reactions involving this species. In the past, a few groups–including the authors of this work–have investigated hydrogen peroxide at these elevated temperatures by using shock tubes [1]-[3]. The shock tube is an ideal experiment for investigating combustion chemistry at elevated pressures and temperatures of interest to this study. Measurements have also been made at temperatures below 900 K within static cells [4]-[6]. It is important to know how this species behaves experimentally in a combustion environment to develop and validate chemical kinetics models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kappel, C., Luther, K., Troe, J.: Physical Chemistry Chemical Physics 4, 4392–4398 (2002)

    Article  Google Scholar 

  2. Hong, Z., Farooq, A., Barbour, E.A., Davidson, D.F., Hanson, R.K.: Journal of Physical Chemistry A 113, 12919–12925 (2009)

    Article  Google Scholar 

  3. Aul, C.J., Crofton, M.W., Mertens, J.D., Petersen, E.L.: Proceedings of the Combustion Institute 33, 709–716 (2011)

    Article  Google Scholar 

  4. Satterfield, C.N., Stein, T.W.: Journal of Physical Chemistry 61, 537–540 (1957)

    Article  Google Scholar 

  5. Hoare, D.E., Protheroe, J.B., Walsh, A.D.: Transactions of the Faraday Society 55, 548–557 (1959)

    Article  Google Scholar 

  6. Baldwin, R.R., Brattan, D., Tunnicliffe, B., Walker, R.W., Webster, S.J.: Combustion and Flame 15, 133–142 (1970)

    Article  Google Scholar 

  7. Petersen, E.L., Rickard, M.J.A., Crofton, M.W., Abbey, E.D., Traum, M.J., Kalitan, D.M.: Measurement and Science Technology 16, 1716–1729 (2005)

    Article  Google Scholar 

  8. Scatchard, G., Kavanagh, G.M., Ticknor, L.B.: Journal of the American Chemical Society 74, 3715–3720 (1952)

    Google Scholar 

  9. Arroyo, M.P., Hanson, R.K.: Applied Optics 32, 6104–6116 (1993)

    Article  Google Scholar 

  10. Rothman, L.S., Gordon, I.E., Barbe, A., Chris Benner, D., Bernath, P.F., Birk, M., Boudon, V., Brown, L.R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L.H., Dana, V., Devi, V.M., Fally, S., Flaud, J.-M., Gamache, R.R., Goldman, A., Jacquemart, D., Kleiner, I., Lacome, N., Lafferty, W.J., Mandin, J.-Y., Massie, S.T., Mikhailenko, S.N., Miller, C.E., Moazzen-Ahmadi, N., Naumenko, O.V., Nikitin, A.V., Orphal, J., Perevalov, V.I., Perrin, A., Predoi-Cross, A., Rinsland, C.P., Rotger, M., Simeckova, M., Smith, M.A.H., Sung, K., Tashkun, S.A., Tennyson, J., Toth, R.A., Vandaele, A.C., Vander Auwera, J.: Journal of Quantitative Spectroscopy and Radiative Transfer 110, 533–572 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aul, C.J., Crofton, M.W., Mertens, J.D., Petersen, E.L. (2012). Measurement of H2O2 Broadening Parameters near 7.8 μm with a Shock Tube. In: Kontis, K. (eds) 28th International Symposium on Shock Waves. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25688-2_117

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25688-2_117

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25687-5

  • Online ISBN: 978-3-642-25688-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics