Skip to main content

Photothermal Laser Material Interactions - From the Sledgehammer to Nano-GPS

  • Conference paper
  • First Online:
Advances in Bio-Imaging: From Physics to Signal Understanding Issues

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 120))

  • 1023 Accesses

Abstract

In this chapter we will summarize the main photothermal, photoacoustic and photomechanical effects of coupling a laser beam into a material from the absorption of the laser light to the deactivation of vibrationally and electronically excited states. Some methods to estimate the resulting temperature rise will be discussed and the resulting pressure increase in the heated area explained. The relaxation of both pressure and thermal transients will be explored and several methods described, such as pump-probe spectroscopy and imaging techniques, which can be used to investigate the dynamics of the relaxation pathways. We will explain how photothermal effects can manifest as optical effects. Finally, we will describe how we can harness photothermally induced optical changes to provide a new methodology in bioimaging involving indestructible 5-10 nm noble metal nanoparticles that can be observed using photothermal tracking microscopy for unprecedented periods of time in live cell imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hobley, J., Kuge, Y., Gorelik, S., Kasuya, M., Hatanaka, K., Kajimoto, S., Fukumura, H.: Water expansion dynamics after pulsed IR laser heating. Phys. Chem. Chem. Phys. 10, 5256–5263 (2008)

    Article  Google Scholar 

  2. Hobley, J., Oori, T., Gorelik, S., Kajimoto, S., Fukumura, H., Honig, D.: Time-Resolved Brewster angle microscopy for photochemical and photothermal studies on thin-films and monolayers. J. Nanosci. Nanotech. 8, 1–10 (2009)

    Google Scholar 

  3. Takamizawa, A., Kajimoto, S., Hobley, J., Hatanaka, K., Ohota, K., Fukumura, H.: Explosive boiling of water after pulsed IR laser heating 5, 888–895 (2003)

    Google Scholar 

  4. Hatanaka, K., Yomogihata, K.I., Ono, H., Nagafuchi, K., Fukumura, H., Fukushima, M., Hashimoto, T., Juodkazis, S., Misawa, H.: Hard X-ray generation using femtosecond irradiation of PbO glass. J. Non-Crystalline Solids 354, 5485–5490 (2008)

    Article  Google Scholar 

  5. Fukumura, H., Hatanaka, K., Hobley, J.: Laser light interactions with solids and their surfaces. J. Photochem. Photobiol. C Photochemistry Reviews 2, 153–167 (2001)

    Article  Google Scholar 

  6. Iwata, K., Hamaguchi, H.: Microscopic mechanism of solute-solvent energy dissipation probed by picosecond time-resolved Raman spectroscopy. J. Phys. Chem. A 101, 632–637 (1997)

    Article  Google Scholar 

  7. Iwata, K., Hamaguchi, H.: Vibrational cooling process in solution probed by picosecond time-resolved Raman spectroscopy. Analysis of the cooling kinetics. J. Mol. Liquids 65/66, 417–420 (1995)

    Article  Google Scholar 

  8. Deak, J.C., Rhea, S.T., Iwaki, L.K., Dlott, D.D.: Vibrational energy relaxation and spectral diffusion in water and deuterated water. J. Phys. Chem. A 104, 4866–4875 (2000)

    Article  Google Scholar 

  9. Heinhoff, K., Braslavsky, S.E.: Triplet lifetime determination by laser-induced optoacoustic spectroscopy. Benzophenone/iodide revisited. Chem. Phys. Lett. 131(3), 183–188 (1986)

    Article  Google Scholar 

  10. Bilmes, G.M., Tocho, J.O., Braslavsky, S.E.: Photophysical processes of polymethine dyes. An absorption, emission and optoacoustic study on 3,3-diethylthiadicarbocyanine iodide. J. Phys. Chem. 93, 6696–6699 (1989)

    Article  Google Scholar 

  11. Tokeshi, M., Uchida, M., Hibara, A., Sawada, T., Kitamori, T.: Determination of subyoctomole amounts of non-fluorescent molecules using a thermal lens microscope: Subsingle-molecule determination. Anal. Chem. 73, 2112–2116 (2001)

    Article  Google Scholar 

  12. Harata, A., Yamaguchi, N.: Photothermal lensing signal enhancement by the transient absorption of photoexcited states in liquid solutions. Anal. Sci. 16, 743–749 (2000)

    Article  Google Scholar 

  13. Harata, A., Fukushima, K., Hatano, Y.: Magnification in excess of 100-times of the photothermal lensing signal from solute molecules by two-color excitation with continuos-wave lasers. Anal. Sci. 18, 1367–1373 (2002)

    Article  Google Scholar 

  14. Hirashima, S., Harata, A.: Ultraviolet excitation photothermal spectroscopy of non-labeled amino acids and visible-light induced signal enhancement. J. Appl. Phys. 47, 3970–3973 (2008)

    Article  Google Scholar 

  15. Paltauf, G., Dyer, P.E.: Photomechanical processes and effects in ablation. Chem. Rev. 103, 487–518 (2003)

    Article  Google Scholar 

  16. Ballew, R.M., Sabelko, J., Reinier, C., Grubeke, M.: A single-sweep nanosecond time resolution laser temperature-jump apparatus. Rev. Sci. Instrum. 67(10), 3694–3699 (1996)

    Article  Google Scholar 

  17. Wray, W.O., Aida, T., Dyer, R.B.: Photoacoustic cavitation and heat transfer effects in the laser-induced temperature jump in water. Appl. Phys. B 74, 57–66 (2002)

    Article  Google Scholar 

  18. Kim, D., Ye, M., Grigoropoulus, C.P.: Pulsed laser-induced ablation of absorbing liquids and acoustic-transient generation (1998)

    Google Scholar 

  19. Oraevsky, A.A., Jacques, S.L.: Mechanism of laser ablation for aqueous media irradiated under confined-stress conditions. J. Appl. Phys. 78(2), 1281–1290 (1995)

    Article  Google Scholar 

  20. Lscher: Photoacoustic Effect in Condensed MatterHistorical Development. In: Lscher, Edgar, et al. (eds.) Photoacoustic Effect: Principles and Applications, p. 1. Friedr. Vieweg & Sohn, Braunschweig (1984)

    Google Scholar 

  21. Harata, A., Shen, Q., Sawada, T.: Photothermal applications of lasers: Study of fast and ultrafast photothermal phenomena at metal-liquid interfaces (1999)

    Google Scholar 

  22. Sawada, T.: Ultrafast dynamics at solid/liquid interfaces as investigated by photothermal spectroscopy. Pure Appl. Chem. 73(10), 1613-1623 (2001)

    Google Scholar 

  23. Terazima, M.: Ultrafast rise of translational temperature after photoexcitation to electronic excited state in solution: Transient lens study of Ni2 +  aqueous solution. J. Chem. Phys. 105(16), 6587–6595 (1996)

    Google Scholar 

  24. Harata, A., Matuda, T., Hirashima, S.: Ultraviolet-laser excitation microscopic photothermal lens imaging for observing biological cells. J. Appl. Phys. 46(7B), 4561-4563 (2007)

    Google Scholar 

  25. Harada, M., Shibata, M., Kitamori, T., Sawada, T.: Application of coaxial beam photothermalmicroscopy to the analysis of a single biological cell in water. Anal. Chim. Acta 299, 343–347 (1995)

    Google Scholar 

  26. Kimura, H., Mukaida, M., Kitamori, T., Sawada, T.: Anal. Sci. 13, 729–734 (1997)

    Google Scholar 

  27. Tao, C., Zhao, Y., He, H., Li, D., Shao, J., Fan, Z.: Imaging photothermal microscopy for absorption measurements of optical coatings. Chin. Optics Lett. 7(11), 1061–1064 (2009)

    Google Scholar 

  28. Savignat, G., Boch, P., Pottier, L., Vandembroucq, D., Fournier, D.: Non-destructive characterization of refractories by mirage effect and photothermal microscopy. J. De Physique IV Colloque C7 Suppliment of J. De Physique III 3, 1267–1272 (1993)

    Google Scholar 

  29. Studenmund, W.R., Fishman, I.M., Kino, G.S., Giapintzakis, J.: Progress in photothermal microscopy of Yba2Cu3O7-x, J. Phys. Chem. Solids 10-12, 2012–2014 (1998)

    Google Scholar 

  30. Commandre, M., Natoli, J.-Y., Gallais, L.: Photothermal microscopy for studying the role of nano-sized absorbing precursors in laser-induced damage of optical materials. Eur. Phys. J. Special topics 153, 59–64 (2008)

    Google Scholar 

  31. Octeau, V., Cognet, L., Duchesne, L., Lasne, D., Schaeffer, N., Fernig, D.G., Lounis, B.: Photothermal Absorption Correlation Spectroscopy. ACS Nano 3(2), 345–350 (2009)

    Google Scholar 

  32. van Dijk, M.A., Tchebotareva, A.L., Orrit, M., Lippitz, M., Berciaud, S., Lasne, D., Cognet, L., Lounis, B.: Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486–3495 (2006)

    Google Scholar 

  33. Lasne, D., Blab, G.A., Berciaud, S., Heine, M., Groc, L., Choquet, D., Cognet, L., Lounis, B.: Single Nanoparticle Photothermal Tracking (SNaPT) of 5-nm Gold Beads in Live Cells. Biophys. J. 91, 4598–4604 (2006)

    Google Scholar 

  34. Berciaud, S., Cognet, L., Tamarat, P., Lounis, B.: Observation of Intrinsic Size Effects in the Optical Response of Individual Gold Nanoparticles. Nano Lett. 5(3), 515–518 (2005)

    Google Scholar 

  35. Berciaud, S., Cognet, L., Blab, G.A., Lounis, B.: Photothermal Heterodyne Imaging of Individual Nonfluorescent Nanoclusters and Nanocrystals. Phys. Rev. Lett. 93, 257402-1 – 257402-4 (2004)

    Google Scholar 

  36. Berciaud, S., Lasne, D., Blab, G.A., Cognet, L., Lounis, B.: Photothermal heterodyne imaging of individual metallic nanoparticles: Theory versus experiment. Phys. Rev. B 73, 045424-1– 045424-8 (2006)

    Google Scholar 

  37. Gaiduk, I.A., Yorulmaz, M., Ruijgrok, P.V., Orrit, M.: Room-Temperature Detection of a Single Molecules Absorption by Photothermal Contrast. Science 330(6002), 353–356 (2010)

    Google Scholar 

  38. Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M.: Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005)

    Article  Google Scholar 

  39. Frens, G.: Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature. Phys. Sci. 241, 20–22 (1973)

    Google Scholar 

  40. Brust, M., Walker, M., Bethell, D., Schiffrin, D.J., Whyman, R.J.: Synthesis of thiol-derivatized gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc. Chem. Commun., 801–802 (1994)

    Google Scholar 

  41. Kanaras, A.G., Kamounah, F.S., Schaumburg, K., Kiely, C.J., Brust, M.: Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters. Chem. Commun., 2294–2295 (2002)

    Google Scholar 

  42. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L., Mirkin, C.A.: Selective colorimetric detection of polynucleotides based on the distance-dependent optical Properties of Gold Nanoparticles. Science 277, 1078–1081 (1997)

    Article  Google Scholar 

  43. Lvy, R., Thanh, N.T.K., Doty, R.C., Hussain, I., Nichols, R.J., Schiffrin, D.J., Brust, M., Fernig, D.G.: Rational and combinatorial design of peptide capping ligands for gold nanoparticles. JACS 126, 10076–10084 (2004)

    Article  Google Scholar 

  44. Duchesne, L., Gentili, D., Comes-Franchini, M., Fernig, D.G.: Robust ligand shells for biological applications of gold nanoparticles. Langmuir 24, 13580–13752 (2008)

    Article  Google Scholar 

  45. Sardar, R., Bjorge, N.S., Shumaker-Parry, J.S.: pH-Controlled assemblies of polymeric amine-stabilized gold nanoparticles. Macromolecules 41, 4347–4352 (2008)

    Article  Google Scholar 

  46. Kim, K., Shin, D., Kim, K.L., Shin, K.S.: Electromagnetic field enhancement in the gap between two Au nanoparticles: the size of hot site probed by surface-enhanced ramen scattering. Phys. Chem. Chem. Phys. 12, 3747–3752 (2010)

    Article  Google Scholar 

  47. Mirkhalaf, F., Paprotny, J., Schriffrin, D.J.: Synthesis of metal nanoparticles stabilized by metal-carbon bonds. JACS 128, 7400–7401 (2006)

    Article  Google Scholar 

  48. Maus, L., Dick, O., Bading, H., Spatz, J.P., Fiammengo, R.: Conjugation of peptides to the passivation shell of gold nanoparticles for targeting of cell-surface receptors. ACS Nano. 4, 6617-6628 (2010)

    Google Scholar 

  49. Templeton, A.C., Hostetler, M.J., Kraft, C.T., Murray, R.W.: Reactivity of monolayer-protected gold cluster molecules: steric effects. JACS 120, 1906–1911 (1998)

    Google Scholar 

  50. Free, P., Shaw, C.P., Lvy, R.: PEGylation modulates the interfacial kinetics of proteases on peptide-capped gold nanoparticles. Chem. Commun., 5009–5011 (2009)

    Google Scholar 

  51. Henglein, A.: Colloidal silver nanoparticles: photochemical preparation and interaction with O2, CCl4, and some metal ions. Chem. Mater. 10, 444–450 (1998)

    Article  Google Scholar 

  52. Templeton, A.C., Wuelfing, M.P., Murray, R.W.: Monolayer-protected cluster molecules. Acc. Chem. Res. 33, 27–36 (2000)

    Article  Google Scholar 

  53. Pengo, P., Polizzi, S., Battagliarin, M., Pasquato, L., Scrimin, P.J.: Synthesis, characterization and properties of water-soluble gold nanoparticles with tunable core size. Mater Chem. 13, 2471–2478 (2003)

    Article  Google Scholar 

  54. Bartz, M., Kuther, J., Nelles, G., Weber, N., Seshadri, R., Tremel, W.: Monothiols derived from glycols as agents for stabilizing gold colloids in water: synthesis, self-assembly and use as crystallization templates. J. Mater Chem. 9, 1121–1125 (1999)

    Article  Google Scholar 

  55. Zahr, A.S., Davis, C.A., Pishko, M.V.: Macrophage uptake of core-shell nanoparticles surface modified with poly (ethylene glycol). Langmuir 22, 8178–8185 (2006)

    Article  Google Scholar 

  56. Zhao, W., Brook, M.A., Li, Y.: Design of gold nanoparticles-based colorimetric bio sensing assays. Chembiochem. 9, 2363–2371 (2008)

    Article  Google Scholar 

  57. Doty, R.C., Tsikhudo, T.R., Brust, M., Fernig, D.G.: Extremely stable water-soluble Ag nanoparticles. Chem. Mater. 17, 4630–4635 (2005)

    Article  Google Scholar 

  58. Budijono, S.J., Shan, J., Yao, N., Miura, Y., Hoye, T., Austin, R.H., Ju, Y., Prudhomme, R.K.: Synthesis of stable block-copolymer-protected NaYF4:Yb3+, Er3+ up-converting phosphor nanoparticles. Chem. Mater. 22, 311–318 (2010)

    Article  Google Scholar 

  59. Griffin, B.A., Adams, S.R., Tsien, R.Y.: Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998)

    Article  Google Scholar 

  60. Worden, J.G., Dai, Q., Shaffer, A.W., Huo, Q.: Monofunctional group-modified gold nanoparticles from solid phase synthesis approach: solid support and experimental condition effect. Chem. Mater. 16, 3746–3755 (2004)

    Article  Google Scholar 

  61. Lata, S., Reichel, A., Brock, R., Tamp, R., Piehler, J.: High-affinity adaptors for switch able recognition of histidine-tagged proteins. JACS 127, 10205–10215 (2005)

    Article  Google Scholar 

  62. Lvy, R., Wang, Z., Duchesne, L., Doty, R.C., Cooper, A.I., Brust, M., Fernig, D.G.: A Generic approach to monofunctionalized protein-like gold nanoparticles based on immobilized metal ion affinity chromatography. Chembiochem. 7, 592–594 (2006)

    Article  Google Scholar 

  63. Zharov, V.P.: Far-field photothermal microscopy beyond the diffraction limit. Optics Lett. 28(5), 1314–1316 (2003)

    Article  Google Scholar 

  64. Chrisey, D.B., Pique, A., McGill, R.A., Horwitz, J.S., Ringeisen, B.R., Bubb, D.M., Wu, P.K.: Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553–576 (2003)

    Article  Google Scholar 

  65. Goto, M., Pihosh, Y., Kasahara, A., Tosa, M., Hobley, J., Oishi, T.: Pulsed Laser Writing of Coumarin 6 Molecular Micro Patterns on a Poly(ethyl-methacrylate) Film. J. Adv. Mater. 41(1), 13–17 (2009)

    Google Scholar 

  66. Hobley, J., Nakamori, T., Kajimoto, S., Kasuya, M., Hatanaka, K., Fukumura, H., Nishio, S.: Formation of 3,4,9,10-perylenetetracarboxylicdianhydride nanoparticles with perylene and polyyne byproducts by 355 nm nanosecond pulsed laser ablation of microcrystal suspensions. J. Photochem. Photobiol. A 189(1), 105–113 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Berlin Heidelberg

About this paper

Cite this paper

Hobley, J., Paramelle, D., Free, P., Fernig, D.G., Kajimoto, S., Gorelik, S. (2012). Photothermal Laser Material Interactions - From the Sledgehammer to Nano-GPS. In: Loménie, N., Racoceanu, D., Gouaillard, A. (eds) Advances in Bio-Imaging: From Physics to Signal Understanding Issues. Advances in Intelligent and Soft Computing, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25547-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25547-2_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25546-5

  • Online ISBN: 978-3-642-25547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics