Skip to main content

Modeling of the Energy and Matter Exchange

  • Chapter
  • First Online:
Micrometeorology
  • 2286 Accesses

Abstract

Within micrometeorology the term modeling is not uniquely defined. It refers to various methods covering a range of complexity extending from simple regressions up to complicated numerical models . In applied meteorology (agro meteorology and hydro meteorology) simple analytical models are very common. Modeling of evaporation is particularly important but sophisticated numerical methods are not yet widely used in this research area. The following chapter describes different types of models and their limitations beginning with simple analytical methods up to numerical models of near-surface energy and matter transport. The application of models in heterogeneous terrain receives special attention and related flux averaging approaches are addressed in a separate subchapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albertson JD and Parlange MB (1999) Natural integration of scalar fluxes from complex terrain. Adv Water Res. 23:239–252.

    Google Scholar 

  • Allen RG, Pereira LS, Raes D and Smith M (1998) Crop evaporation. FAO Irrigation Drainage Pap. 56:XXVI + 300 pp.

    Google Scholar 

  • Allen RG, Walter IA, Elliott R, Howell T, Itenfisu D and Jensen M (2005) The ASCE standardized reference evapotranspiration equation. Environmental and Water Resources Institute of the American Society of Civil Engineers, X + 59 pp.

    Google Scholar 

  • Arya SP (2001) Introduction to Micrometeorology. Academic Press, San Diego, 415 pp.

    Google Scholar 

  • Avissar R and Pielke RA (1989) A parametrization of heterogeneous land surface for atmospheric numerical models and its impact on regional meteorology. Monthly Weather Review. 117:2113–2136.

    Google Scholar 

  • Baldocchi D (1988) A multi-layer model for estimating sulfor dioxid deposition to a deciduous oke forest canopy. Atmos Environm. 22:869–884.

    Google Scholar 

  • Baldocchi D, Hicks BB and Camara P (1987) A canopy stomatal resistance model for gaseous deposition to vegetated surfaces. Atmos Environm. 21:91–101.

    Google Scholar 

  • Ball JT, Woodrow IE and Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J (ed.), Progress in Photosynthesis Research. Vol. IV. Martinus Nijhoff Publisher, Dordrecht, IV.5.221–IV.5.224.

    Google Scholar 

  • Batchvarova E and Gryning S-E (1991) Applied model for the growth of the daytime mixed layer. Boundary-Layer Meteorol. 56:261–274.

    Google Scholar 

  • Behrens J, Rakowsky N, Hiller W, Handorf D, Läuter M, Päpke J and Dethloff K (2005) amatos: parallel adaptive mesh generator for atmospheric and oceanic simulation. Ocean Modelling. 10:171–183.

    Google Scholar 

  • Beljaars ACM (1995) The parametrization of surface fluxes in large scale models under free convection. Quart J Roy Meteorol Soc. 121:255–270.

    Google Scholar 

  • Beljaars ACM and Holtslag AAM (1991) Flux parametrization over land surfaces for atmospheric models. J Appl Meteorol. 30:327–341.

    Google Scholar 

  • Beljaars ACM and Viterbo P (1998) Role of the boundary layer in a numerical weather prediction model. In: Holtslag AAM and Duynkerke PG (eds.), Clear and Cloudy Boundary Layers, vol VNE 48. Royal Netherlands Academy of Arts and Sciences, Amsterdam, 287–304.

    Google Scholar 

  • Best MJ, Beljaars A, Polcher J and Viterbo P (2004) A proposed structure for coupling tiled surfaces with the planetary boundary layer. J Hydrometeorol. 5:1271–1278.

    Google Scholar 

  • Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y and Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climat. 116:301–316.

    Google Scholar 

  • Bjutner EK (1974) Teoreticeskij rascet soprotivlenija morskoj poverchnosti (Theoretical calculation of the resistance at the surface of the ocean). In: Dubov AS (ed.), Processy perenosa vblizi poverchnosti razdela okean - atmosfera (Exchange processes near the ocean - atmosphere interface). Gidrometeoizdat, Leningrad, 66–114.

    Google Scholar 

  • Blackadar AK (1997) Turbulence and Diffusion in the Atmosphere. Springer, Berlin, Heidelberg, 185 pp.

    Google Scholar 

  • Blümel K (1998) Estimation of sensible heat flux from surface temperature wave and one-time-of-day air temperature observations. Boundary-Layer Meteorol. 86:193–232.

    Google Scholar 

  • Blyth EM (1995) Comments on ‘The influence of surface texture on the effective roughness length’ by H. P. Schmid and D. Bünzli (1995, 121, 1–21). Quart J Roy Meteorol Soc. 121:1169–1171.

    Google Scholar 

  • Brötz B, Eigenmann R, Dörnbrack A, Foken T and Wirth V (2014) Early-morning flow transition in a valley in low-mountain terrain. Boundary-Layer Meteorol. 152:45–63.

    Google Scholar 

  • Brutsaert WH (1982) Evaporation into the atmosphere: Theory, history and application. D. Reidel, Dordrecht, 299 pp.

    Google Scholar 

  • Burridge DM and Gadd AJ (1977) The Meteorological Office operational 10-level numerical weather prediction model (December 1975). Meteorological Office Technical Notes. 34:39 pp.

    Google Scholar 

  • Csanady GT (2001) Air-sea interaction, Laws and mechanisms. Cambridge University Press, Cambridge, New York, 239 pp.

    Google Scholar 

  • Davidan IN, Lopatuhin LI and Rogkov VA (1985) Volny v okeane (Waves in the ocean). Gidrometeoizdat, Leningrad, 256 pp.

    Google Scholar 

  • Deardorff JW (1972) Numerical investigation of neutral und unstable planetary boundary layer. J Atmos Sci. 29:91–115.

    Google Scholar 

  • DeBruin HAR (1983) A model for the Priestley–Taylor parameter α. J Climate Appl Meteorol. 22:572–578.

    Google Scholar 

  • DeBruin HAR and Holtslag AAM (1982) A simple parametrization of the surface fluxes of sensible and latent heat during daytime compared with the Penman–Monteith concept. J Climate Appl Meteorol. 21:1610–1621.

    Google Scholar 

  • Dommermuth H and Trampf W (1990) Die Verdunstung in der Bundesrepublik Deutschland, Zeitraum 1951-1980, Teil 1. Deutscher Wetterdienst, Offenbach, 10 pp.

    Google Scholar 

  • Doorenbos J and Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation Drainage Pap. 24, 2nd ed.:145 pp.

    Google Scholar 

  • DVWK (1996) Ermittlung der Verdunstung von Land- und Wasserflächen. DVWK-Merkblätter zur Wasserwirtschaft. 238:134 pp.

    Google Scholar 

  • Falge EM, Ryel RJ, Alsheimer M and Tenhunen JD (1997) Effects on stand structure and physiology on forest gas exchange: A simulation study for Norway spruce. Trees. 11:436–448.

    Google Scholar 

  • Farquhar GD, von Caemmerer S and Berry JA (1980) A biochemical of photosynthetic CO2 assimilation in leaves of C3 species. Planta. 149:78–90.

    Google Scholar 

  • Foken T (1978) The molecular temperature boundary layer of the atmosphere over various surfaces. Archiv Meteorol Geophys Bioklim, Ser. A. 27:59–67.

    Google Scholar 

  • Foken T (1984) The parametrisation of the energy exchange across the air-sea interface. Dynamics Atm Oceans. 8:297–305.

    Google Scholar 

  • Foken T (1986) An operational model of the energy exchange across the air-sea interface. Z Meteorol. 36:354–359.

    Google Scholar 

  • Foken T (1996) Turbulenzexperiment zur Untersuchung stabiler Schichtungen. Ber Polarforschung. 188:74–78.

    Google Scholar 

  • Foken T (2002) Some aspects of the viscous sublayer. Meteorol Z. 11:267–272.

    Google Scholar 

  • Foken T (2016) Angewandte Meteorologie. Springer-Spektrum, Berlin, Heidelberg, 394 pp.

    Google Scholar 

  • Foken T, Kitajgorodskij SA and Kuznecov OA (1978) On the dynamics of the molecular temperature boundary layer above the sea. Boundary-Layer Meteorol. 15:289–300.

    Google Scholar 

  • Foken T, Dlugi R and Kramm G (1995) On the determination of dry deposition and emission of gaseous compounds at the biosphere-atmosphere interface. Meteorol Z. 4:91–118.

    Google Scholar 

  • Friedrich K, Mölders N and Tetzlaff G (2000) On the influence of surface heterogeneity on the Bowen-ratio: A theoretical case study. Theor Appl Climat. 65:181–196.

    Google Scholar 

  • Garratt JR (1992) The Atmospheric Boundary Layer. Cambridge University Press, Cambridge, 316 pp.

    Google Scholar 

  • Geernaert GL (ed) (1999) Air-Sea Exchange: Physics, Chemistry and Dynamics. Kluwer Acad. Publ., Dordrecht, 578 pp.

    Google Scholar 

  • Göckede M and Foken T (2001) Ein weiterentwickeltes Holtslag-van Ulden-Schema zur Stabilitätsparametrisierung in der Bodenschicht. Österreichische Beiträge zu Meteorologie und Geophysik. 27:(Extended Abstract and pdf-file on CD) 210.

    Google Scholar 

  • Göckede M, Markkanen T, Mauder M, Arnold K, Leps JP and Foken T (2005) Validation of footprint models using natural tracer measurements from a field experiment. Agrical Forest Meteorol. 135:314–325.

    Google Scholar 

  • Grimmond CSB, King TS, Roth M and Oke TR (1998) Aerodynamic roughness of urban areas derived from wind observations. Boundary-Layer Meteorol. 89:1–24.

    Google Scholar 

  • Groß G (1993) Numerical Simulation of Canopy Flows. Springer, Berlin, Heidelberg pp.

    Google Scholar 

  • Gryning S-E, Batchvarova E, Brümmer B, Jørgensen H and Larsen S (2007) On the extension of the wind profile over homogeneous terrain beyond the surface boundary layer. Boundary-Layer Meteorol. 124:251–268.

    Google Scholar 

  • Gusev EM and Nasonova ON (2010) Modelirovanie teplo- i vlagoobmena poverchnosti sushi s atmosferoj (Modelling of the heat and moisture exchange of land surfaces with the atmosphere). Nauka, Moskva, 327 pp.

    Google Scholar 

  • Handorf D, Foken T and Kottmeier C (1999) The stable atmospheric boundary layer over an Antarctic ice sheet. Boundary-Layer Meteorol. 91:165–186.

    Google Scholar 

  • Hasager CB and Jensen NO (1999) Surface-flux aggregation in heterogeneous terrain. Quart J Roy Meteorol Soc. 125:2075–2102.

    Google Scholar 

  • Hasager CB, Nielsen NW, Jensen NO, Boegh E, Christensen JH, Dellwik E and Soegaard H (2003) Effective roughness calculated from satellite-derived land cover maps and hedge-information used in a weather forecasting model. Boundary-Layer Meteorol. 109:227–254.

    Google Scholar 

  • Haude W (1955) Bestimmung der Verdunstung auf möglichst einfache Weise. Mitt Dt Wetterdienst. 11:24 pp.

    Google Scholar 

  • Herzog H-J, Vogel G and Schubert U (2002) LLM - a nonhydrostatic model applied to high-resolving simulation of turbulent fluxes over heterogeneous terrain. Theor Appl Climat. 73:67–86.

    Google Scholar 

  • Hess GD (2004) The neutral, barotropic planetary layer capped by a low-level inversion. Boundary-Layer Meteorol. 110:319–355.

    Google Scholar 

  • Hicks BB, Baldocchi DD, Meyers TP, Hosker jr. RP and Matt DR (1987) A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air and Soil Pollution. 36:311–330.

    Google Scholar 

  • Hillel D (1980) Applications of Soil Physics. Academic Press, New York, 385 pp.

    Google Scholar 

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: A re-evaluation. Boundary-Layer Meteorol. 42:55–78.

    Google Scholar 

  • Holtslag AAM and van Ulden AP (1983) A simple scheme for daytime estimates of the surface fluxes from routine weather data. J Climate Appl Meteorol. 22:517–529.

    Google Scholar 

  • Houghton JT (2015) Global Warming, The complete Briefing. Cambridge University Press, Cambridge, 396 pp.

    Google Scholar 

  • Inclán MG, Forkel R, Dlugi R and Stull RB (1996) Application of transilient turbulent theory to study interactions between the atmospheric boundary layer and forest canopies. Boundary-Layer Meteorol. 79:315–344.

    Google Scholar 

  • Jacobs AFG, Heusinkveld BG and Nieveen JP (1998) Temperature behavior of a natural shallow water body during a summer periode. Theor Appl Climat. 59:121–127.

    Google Scholar 

  • Jacobson MZ (2005) Fundamentals of Atmospheric Modelling. Cambridge University Press, Cambridge, 813 pp.

    Google Scholar 

  • Jarvis PG (1976) The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Phil Trans Roy. Soc London B: Biolog Sci. 273:593–610.

    Google Scholar 

  • Kaimal JC and Finnigan JJ (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, New York, NY, 289 pp.

    Google Scholar 

  • Kanani-Sühring F and Raasch S (2015) Spatial variability of scalar concentrations and fluxes downstream of a clearing-to-forest transition: A Large-Eddy Simulation study. Boundary-Layer Meteorol. 155:1–27.

    Google Scholar 

  • Kantha LH and Clayson CA (2000) Small scale processes in geophysical fluid flows. Academic Press, San Diego, 883 pp.

    Google Scholar 

  • Kitajgorodskij SA and Volkov JA (1965) O rascete turbulentnych potokov tepla i vlagi v privodnom sloe atmosfery (The calculation of the turbulent fluxes of temperature and humidity in the atmosphere near the water surface) Izv AN SSSR, Fiz Atm Okeana. 1:1317–1336.

    Google Scholar 

  • Klaassen W, van Breugel PB, Moors EJ and Nieveen JP (2002) Increased heat fluxes near a forest edge. Theor Appl Climat. 72:231–243.

    Google Scholar 

  • Kramm G and Foken T (1998) Ucertainty analysis on the evaporation at the sea surface. Second Study Conference on BALTEX, Juliusruh, 25–29 May 1998. BALTEX Secretariat, pp. 113–114.

    Google Scholar 

  • Kramm G, Foken T, Molders N, Muller H and Paw U KT (1996a) The sublayer-Stanton numbers of heat and matter for different types of natural surfaces. Contr Atmosph Phys. 69:417–430.

    Google Scholar 

  • Kramm G, Beier M, Foken T, Müller H, Schröder P and Seiler W (1996b) A SVAT-skime for NO, NO2, and O3 - Model description and test results. Meteorol Atmos Phys. 61:89–106.

    Google Scholar 

  • Kramm G, Dlugi R and Mölders N (2002) Sublayer-Stanton numbers of heat and matter for aerodynamically smooth surfaces: basic considerations and evaluations. Meteorol Atmos Phys. 79:173–194.

    Google Scholar 

  • Landau LD and Lifschitz EM (1987) Fluid Mechanics. Butterworth-Heinemann, Oxford, 539 pp.

    Google Scholar 

  • Leclerc MY and Foken T (2014) Footprints in Micrometeorology and Ecology. Springer, Heidelberg, New York, Dordrecht, London, XIX, 239 pp.

    Google Scholar 

  • Letzel MO, Krane M and Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighbourhood scale. Atmos Environm. 42:8770–8784.

    Google Scholar 

  • Leuning R (1995) A critical appraisal of a combined stomatal-photosynthesis model for C3 plants. Plant, Cell & Environment. 18:339–355.

    Google Scholar 

  • Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Goldstein HH (ed). IBM Scientific Computing Symposium on Environmental Science, Yorktown Heights, N.Y., November 14-16, 1966 1967, pp. IBM Form No. 320-1951, 1195–1210.

    Google Scholar 

  • Louis JF (1979) A parametric model of vertical fluxes in the atmosphere. Boundary-Layer Meteorol. 17:187–202.

    Google Scholar 

  • Louis JF, Tiedtke M and Geleyn JF (1982) A short history of the PBL parametrization at ECMWF. Workshop on Boundary Layer parametrization, Reading1982. ECMWF, pp. 59–79.

    Google Scholar 

  • Lüers J and Bareiss J (2010) The effect of misleading surface temperature estimations on the sensible heat fluxes at a high Arctic site – the Arctic Turbulence Experiment 2006 on Svalbard (ARCTEX-2006). Atmos Chem Phys. 10:157–168.

    Google Scholar 

  • Mahrt L (1996) The bulk aerodynamic formulation over heterogeneous surfaces. Boundary-Layer Meteorol. 78:87–119.

    Google Scholar 

  • Mallick K, Boegh E, Trebs I, Alfieri JG, Kustas WP, Prueger JH, Niyogi D, Das N, Drewry DT, Hoffmann L and Jarvis AJ (2015) Reintroducing radiometric surface temperature into the Penman–Monteith formulation. Water Resources Res. 51:6214–6243.

    Google Scholar 

  • Mangarella PA, Chambers AJ, Street RL and Hsu EY (1972) Laboratory and field interfacial energy and mass flux and prediction equations. J Geophys Res. 77:5870–5875.

    Google Scholar 

  • Mangarella PA, Chambers AJ, Street RL and Hsu EY (1973) Laboratory studies of evaporation and energy transfer through a wavy air-water interface. J. Phys. Oceanogr. 3:93–101.

    Google Scholar 

  • Mengelkamp H-T, Warrach K and Raschke E (1999) SEWAB a parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv Water Res. 23:165–175.

    Google Scholar 

  • Meyers TP and Paw U KT (1986) Testing a higher-order closure model for modelling airflow within and above plant canopies. Boundary-Layer Meteorol. 37:297–311.

    Google Scholar 

  • Meyers TP and Paw U KT (1987) Modelling the plant canopy microenvironment with higher-order closure principles. Agrical Forest Meteorol. 41:143–163.

    Google Scholar 

  • Mix W, Goldberg V and Bernhardt K-H (1994) Numerical experiments with different approaches for boundary layer modelling under large-area forest canopy conditions. Meteorol Z. 3:187–192.

    Google Scholar 

  • Moene AF and van Dam JC (2014) Transport in the Atmosphere-Vegetation-Soil Continuum. Cambridge University Press, Cambridge, 436 pp.

    Google Scholar 

  • Moeng C-H (1998) Large eddy simulation of atmospheric boundary layers. In: Holtslag AAM and Duynkerke PG (eds.), Clear and cloudy boundary layers, vol VNE 48. Royal Netherlands Academy of Arts and Science, Amsterdam, 67–83.

    Google Scholar 

  • Moeng C-H and Wyngaard JC (1989) Evaluation of turbulent transport and dissipation closure in second-order modelling. J Atmos Sci. 46:2311–2330.

    Google Scholar 

  • Moeng C-H, Sullivan PP and Stevens B (2004) Large-eddy simulation of cloud-topped mixed layers. In: Fedorovich Eet al (eds.), Atmospheric Turbulence and mesoscale Meteorology. Cambridge University Press, Cambridge, 95–114.

    Google Scholar 

  • Mölders N (2001) Concepts for coupling hydrological and meteorological models. Wiss. Mitt. aus dem Inst. für Meteorol. der Univ. Leipzig und dem Institut für Troposphärenforschung e. V. Leipzig. 22:1–15.

    Google Scholar 

  • Mölders N (2012) Land-Use and Land-Cover Changes, Impact on climate and air quality. Springer, Dordrecht, Heidelberg, London, New York, 189 pp.

    Google Scholar 

  • Mölders N and Kramm G (2014) Lectures in Meteorology. Springer, Cham Heidelberg New York Dordrecht London XIX, 591 pp.

    Google Scholar 

  • Mölders N, Raabe A and Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale ß meteorological model. Tellus. 48A:733–749.

    Google Scholar 

  • Monson R and Baldocchi D (2014) Terrestrial Biosphere-Atmosphere Fluxes. Cambridge University Press, New York, XXI, 487 pp.

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. Symp Soc Exp Biol. 19:205–234.

    Google Scholar 

  • Montgomery RB (1940) Observations of vertical humidity distribution above the ocean surface and their relation to evaporation. Pap Phys Oceanogr Meteorol. 7:1–30.

    Google Scholar 

  • Müller C (1999) Modelling Soil-Biosphere Interaction. CABI Publishing, Wallingford, 354 pp.

    Google Scholar 

  • Ohmura A, Steffen K, Blatter H, Greuell W, Rotach M, Stober M, Konzelmann T, Forrer J, Abe-Ouchi A, Steiger D and Neiderbäumer G (1992) Greenland Expedition, Progress Report No. 2, April 1991 to Oktober 1992. Swiss Federal Institute of Technology, Zürich, 94 pp.

    Google Scholar 

  • Owen PR and Thomson WR (1963) Heat transfer across rough surfaces. J Fluid Mech. 15:321–334.

    Google Scholar 

  • Panin GN (1985) Teplo- i massomen meszdu vodoemom i atmospheroj v estestvennych uslovijach (Heat- and mass exchange between the water and the atmosphere in the nature). Nauka, Moscow, 206 pp.

    Google Scholar 

  • Panin GN, Nasonov AE and Souchintsev MG (1996a) Measurements and estimation of energy and mass exchange over a shallow see. In: Donelan M (ed.), The air-sea interface, Miami, 489–494.

    Google Scholar 

  • Panin GN, Tetzlaff G, Raabe A, Schönfeld H-J and Nasonov AE (1996b) Inhomogeneity of the land surface and the parametrization of surface fluxes - a discussion. Wiss Mitt Inst Meteorol Univ Leipzig und Inst Troposphärenforschung Leipzig. 4:204–215.

    Google Scholar 

  • Panin GN, Nasonov AE, Foken T and Lohse H (2006) On the parameterization of evaporation and sensible heat exchange for shallow lakes. Theor Appl Climat. 85:123–129.

    Google Scholar 

  • Panofsky HA (1973) Tower micrometeorology. In: Haugen DA (ed.), Workshop on Micrometeorology. American Meteorological Society, Boston, 151–176.

    Google Scholar 

  • Peña A, Gryning S-E and Hasager C (2010) Comparing mixing-length models of the diabatic wind profile over homogeneous terrain. Theor Appl Climat. 100:325–335.

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proceedings Royal Society London. A193:120–195.

    Google Scholar 

  • Priestley CHB and Taylor JR (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review. 100:81–92.

    Google Scholar 

  • Pyles RD, Weare BC and Paw U KT (2000) The UCD Advanced Canopy-Atmosphere-Soil Algorithm: comparisons with observations from different climate and vegetation regimes. Quart J Roy Meteorol Soc. 126:2951–2980.

    Google Scholar 

  • Raasch S and Schröter M (2001) PALM - A large-eddy simulation model performing on massively parallel computers. Meteorol Z. 10:363–372.

    Google Scholar 

  • Reichardt H (1951) Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Röhren. Z angew Math Mech. 31:208–219.

    Google Scholar 

  • Richter D (1977) Zur einheitlichen Berechnung der Wassertemperatur und der Verdunstung von freien Wasserflächen auf statistischer Grundlage. Abh Meteorol Dienstes DDR. 119:35 pp.

    Google Scholar 

  • Rigby JR, Yin J, Albertson J and Porporato A (2015) Approximate Analytical Solution to Diurnal Atmospheric Boundary-Layer Growth Under Well-Watered Conditions. Boundary-Layer Meteorol. 156:73–89.

    Google Scholar 

  • Roll HU (1948) Wassernahes Windprofil und Wellen auf dem Wattenmeer. Ann Meteorol. 1:139–151.

    Google Scholar 

  • Rutgersson A and Sullivan PP (2005) Investigating the effects of water waves on the turbulence structure in the atmosphere using direct numerical simulations. Dynamics Atm Oceans. 38:147–171.

    Google Scholar 

  • Schädler G, Kalthoff N and Fiedler F (1990) Validation of a model for heat, mass and momentum exchange over vegetated surfaces using LOTREX-10E/HIBE88 data. Contr Atmosph Phys. 63:85–100.

    Google Scholar 

  • Schlegel F, Stiller J, Bienert A, Maas H-G, Queck R and Bernhofer C (2015) Large-Eddy Simulation study of the effects on flow of a heterogeneous forest at sub-tree resolution. Boundary-Layer Meteorol. 154:27–56.

    Google Scholar 

  • Schlichting H and Gersten K (2006) Grenzschicht-Theorie. Springer, Berlin, Heidelberg, 799 pp.

    Google Scholar 

  • Schmid HP and Bünzli D (1995a) The influence of the surface texture on the effective roughness length. Quart J Roy Meteorol Soc. 121:1–21.

    Google Scholar 

  • Schmid HP and Bünzli D (1995b) Reply to comments by E. M. Blyth on ‘The influence of surface texture on the effective roughness length’. Quart J Roy Meteorol Soc. 121:1173–1176.

    Google Scholar 

  • Schmidt H and Schumann U (1989) Coherent structures of the convective boundary layer derived from large eddy simulations. J Fluid Mech. 200:511–562.

    Google Scholar 

  • Schrödter H (1985) Verdunstung, Anwendungsorientierte Meßverfahren und Bestimmungsmethoden. Springer, Berlin, Heidelberg, 186 pp.

    Google Scholar 

  • Schumann U (1989) Large-eddy simulation of turbulent diffusion with chemical reactions in the convective boundary layer. Atmos Environm. 23:1713–1727.

    Google Scholar 

  • Seibert P, Beyrich F, Gryning S-E, Joffre S, Rasmussen A and Tercier P (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environm. 34:1001–1027.

    Google Scholar 

  • Sellers PJ and Dorman JL (1987) Testing the simple biospere model (SiB) for use in general circulation models. J Climate Appl Meteorol. 26:622–651.

    Google Scholar 

  • Shukauskas A and Schlantschiauskas A (1973) Teploodatscha v turbulentnom potoke shidkosti (Heat exchange in the turbulent fluid). Izd. Mintis, Vil’njus, 327 pp.

    Google Scholar 

  • Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review. 91:99–164.

    Google Scholar 

  • Smith SD, Fairall CW, Geernaert GL and Hasse L (1996) Air-sea fluxes: 25 years of progress. Boundary-Layer Meteorol. 78:247–290.

    Google Scholar 

  • Sodemann H and Foken T (2004) Empirical evaluation of an extended similarity theory for the stably stratified atmospheric surface layer. Quart J Roy Meteorol Soc. 130:2665–2671.

    Google Scholar 

  • Sponagel H (1980) Zur Bestimmung der realen Evapotranspiration landwirtschaftlicher Kulturpflanzen. Geologisches Jahrbuch. F9:87 pp.

    Google Scholar 

  • Staudt K, Serafimovich A, Siebicke L, Pyles RD and Falge E (2011) Vertical structure of evapotranspiration at a forest site (a case study). Agrical Forest Meteorol. 151:709–729.

    Google Scholar 

  • Stull RB (1988) An Introduction to Boundary Layer Meteorology. Kluwer Acad. Publ., Dordrecht, Boston, London, 666 pp.

    Google Scholar 

  • Stull R and Santoso E (2000) Convective transport theory and counter-difference fluxes. 14th Symposium on Boundary Layer and Turbulence, Aspen, CO., 7.-11. Aug. 2000. Am. Meteorol. Soc., Boston, pp. 112–113.

    Google Scholar 

  • Sverdrup HU (1937/38) On the evaporation from the ocean. J. Marine Res. 1:3–14.

    Google Scholar 

  • Taylor PA (1987) Comments and further analysis on the effective roughness length for use in numerical three-dimensional models: A research note. Boundary-Layer Meteorol. 39:403–418.

    Google Scholar 

  • Tennekes H (1973) A Model for the Dynamics of the Inversion Above a Convective Boundary Layer. J Atmos Sci. 30:558–567.

    Google Scholar 

  • Troen I and Lundtang Peterson E (1989) European Wind Atlas. Risø National Laboratory, Roskilde, 656 pp.

    Google Scholar 

  • Turc L (1961) Évaluation des besoins en eau d’irrigation évapotranspiration potentielle. Ann Agron. 12:13–49.

    Google Scholar 

  • van Bavel CHM (1986) Potential evapotranspiration: The combination concept and its experimental verification. Water Resources Res. 2:455–467.

    Google Scholar 

  • Vollmer L, van Dooren M, Trabucchi D, Schneemann J, Steinfeld G, Witha B, Trujillo J and Kühn M (2015) First comparison of LES of an offshore wind turbine wake with dual-Doppler lidar measurements in a German offshore wind farm. J Phys: Conf Ser. 625:012001.

    Google Scholar 

  • von Kármán T (1934) Turbulence and skin friction. J. Aeronautic Sci. 1:1–20.

    Google Scholar 

  • Wendling U, Schellin H-G and Thomä M (1991) Bereitstellung von täglichen Informationen zum Wasserhaushalt des Bodens für die Zwecke der agrarmeteorologischen Beratung. Z Meteorol. 41:468–475.

    Google Scholar 

  • Yokoyama O, Gamo M and Yamamoto S (1979) The vertical profiles of the turbulent quantities in the atmospheric boundary layer. J Meteor Soc Japan. 57:264–272.

    Google Scholar 

  • Zilitinkevich SS and Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Quart J Roy Meteorol Soc. 126:1913–1923.

    Google Scholar 

  • Zilitinkevich SS and Esau IN (2005) Resistance and heat transfer laws for stable and neutral planetary layers: Old theory advanced and re-evaluated. Quart J Roy Meteorol Soc. 131:1863–1892.

    Google Scholar 

  • Zilitinkevich SS and Mironov DV (1996) A multi-limit formulation for the equilibrium depth of a stable stratified atmospheric surface layer. Boundary-Layer Meteorol. 81:325–351.

    Google Scholar 

  • Zilitinkevich SS, Perov VL and King JC (2002) Near-surface turbulent fluxes in stable stratification: Calculation techniques for use in general circulation models. Quart J Roy Meteorol Soc. 128:1571–1587.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Foken .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Foken, T. (2017). Modeling of the Energy and Matter Exchange. In: Micrometeorology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25440-6_5

Download citation

Publish with us

Policies and ethics