Skip to main content

Scheduling without Payments

  • Conference paper
Algorithmic Game Theory (SAGT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6982))

Included in the following conference series:

Abstract

We consider mechanisms without payments for the problem of scheduling unrelated machines. Specifically, we consider truthful in expectation randomized mechanisms under the assumption that a machine (player) is bound by its reports: when a machine lies and reports value \(\tilde{t}_{ij}\) for a task instead of the actual one t ij , it will execute for time \(\tilde{t}_{ij}\) if it gets the task—unless the declared value \(\tilde{t}_{ij}\) is less than the actual value t ij , in which case, it will execute for time t ij . Our main technical result is an optimal mechanism for one task and n players which has approximation ratio (n + 1)/2. We also provide a matching lower bound, showing that no other truthful mechanism can achieve a better approximation ratio. This immediately gives an approximation ratio of (n + 1)/2 and n(n + 1)/2 for social cost and makespan minimization, respectively, for any number of tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Feldman, M., Procaccia, A., Tennenholtz, M.: Strategyproof approximation of the minimax on networks. Mathematics of Operations Research 35(3), 513–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Auletta, V., De Prisco, R., Penna, P., Persiano, G.: The power of verification for one-parameter agents. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 171–182. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Christodoulou, G., Koutsoupias, E., Kovács, A.: Mechanism design for fractional scheduling on unrelated machines. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 40–52. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Dughmi, S., Ghosh, A.: Truthful assignment without money. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 325–334. ACM, New York (2010)

    Google Scholar 

  5. Fotakis, D., Tzamos, C.: Winner-imposing strategyproof mechanisms for multiple facility location games. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 234–245. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica: Journal of the Econometric Society, 587–601 (1973)

    Google Scholar 

  7. Guo, M., Conitzer, V.: Strategy-proof allocation of multiple items between two agents without payments or priors. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 881–888. International Foundation for Autonomous Agents and Multiagent Systems (2010)

    Google Scholar 

  8. Koutsoupias, E., Vidali, A.: A lower bound of 1+ ϕ for truthful scheduling mechanisms. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 454–464. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Lu, P., Sun, X., Wang, Y., Zhu, Z.: Asymptotically optimal strategy-proof mechanisms for two-facility games. In: Proceedings of the 11th ACM Conference on Electronic Commerce, pp. 315–324. ACM, New York (2010)

    Google Scholar 

  10. Lu, P., Wang, Y., Zhou, Y.: Tighter bounds for facility games. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929, pp. 137–148. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Mu’alem, A., Schapira, M.: Setting lower bounds on truthfulness: extended abstract. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1143–1152. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  12. Nisan, N., Ronen, A.: Algorithmic mechanism design (extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, pp. 129–140. ACM, New York (1999)

    Google Scholar 

  13. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic game theory. Cambridge Univ. Pr., Cambridge (2007)

    Book  MATH  Google Scholar 

  14. Nissim, K., Smorodinsky, R., Tennenholtz, M.: Approximately optimal mechanism design via differential privacy. Arxiv preprint arXiv:1004.2888 (2010)

    Google Scholar 

  15. Procaccia, A., Tennenholtz, M.: Approximate mechanism design without money. In: Proceedings of the Tenth ACM Conference on Electronic Commerce, pp. 177–186. ACM, New York (2009)

    Chapter  Google Scholar 

  16. Roberts, K.: The characterization of implementable choice rules. Aggregation and Revelation of Preferences, 321–348 (1979)

    Google Scholar 

  17. Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social welfare functions. Journal of Economic Theory 10(2), 187–217 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koutsoupias, E. (2011). Scheduling without Payments. In: Persiano, G. (eds) Algorithmic Game Theory. SAGT 2011. Lecture Notes in Computer Science, vol 6982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24829-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24829-0_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24828-3

  • Online ISBN: 978-3-642-24829-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics