Skip to main content

Anisotropic Non-Local Means with Spatially Adaptive Patch Shapes

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2011)

Abstract

This paper is about extending the classical Non-Local Means (NLM) denoising algorithm using general shapes instead of square patches. The use of various shapes enables to adapt to the local geometry of the image while looking for pattern redundancies. A fast FFT-based algorithm is proposed to compute the NLM with arbitrary shapes. The local combination of the different shapes relies on Stein’s Unbiased Risk Estimate (SURE). To improve the robustness of this local aggregation, we perform an anistropic diffusion of the risk estimate using a properly modified Perona-Malik equation. Experimental results show that this algorithm improves the NLM performance and it removes some visual artifacts usually observed with the NLM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  2. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123(3), 199–257 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Weickert, J.: Anisotropic diffusion in image processing. European Consortium for Mathematics in Industry. B. G. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

  4. Yaroslavsky, L.P.: Digital picture processing. Springer Series in Information Sciences, vol. 9. Springer, Berlin (1985)

    Google Scholar 

  5. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: ICCV, pp. 839–846 (1998)

    Google Scholar 

  6. Lepski, O.V., Mammen, E., Spokoiny, V.G.: Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25(3), 929–947 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Polzehl, J., Spokoiny, V.G.: Adaptive weights smoothing with applications to image restoration. J. R. Stat. Soc. Ser. B Stat. Methodol. 62(2), 335–354 (2000)

    Article  MathSciNet  Google Scholar 

  8. Katkovnik, V., Foi, A., Egiazarian, K.O., Astola, J.T.: Directional varying scale approximations for anisotropic signal processing. In: EUSIPCO, pp. 101–104 (2004)

    Google Scholar 

  9. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Awate, S.P., Whitaker, R.T.: Unsupervised, information-theoretic, adaptive image filtering for image restoration. IEEE Trans. Pattern Anal. Mach. Intell. 28(3), 364–376 (2006)

    Article  Google Scholar 

  11. Kervrann, C., Boulanger, J.: Optimal spatial adaptation for patch-based image denoising. IEEE Trans. Image Process. 15(10), 2866–2878 (2006)

    Article  Google Scholar 

  12. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  13. Mairal, J., Sapiro, G., Elad, M.: Learning multiscale sparse representations for image and video restoration. Multiscale Model. Simul. 7(1), 214–241 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A.: Non-local sparse models for image restoration. In: ICCV (2009)

    Google Scholar 

  15. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  16. Salmon, J., Strozecki, Y.: From patches to pixels in non-local methods: Weighted-Average reprojection. In: ICIP (2010)

    Google Scholar 

  17. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.O.: BM3D image denoising with shape-adaptive principal component analysis. In: Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations, SPARS 2009 (2009)

    Google Scholar 

  18. Duval, V., Aujol, J.F., Gousseau, Y.: On the parameter choice for the non-local means. Technical Report hal-00468856, HAL (2010)

    Google Scholar 

  19. Stein, C.M.: Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9(6), 1135–1151 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Van De Ville, D., Kocher, M.: SURE-based Non-Local Means. IEEE Signal Process. Lett. 16, 973–976 (2009)

    Article  Google Scholar 

  21. Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEE_J_IP 16(11), 2778–2786 (2007)

    MathSciNet  Google Scholar 

  22. Ramani, S., Blu, T., Unser, M.: Monte-Carlo SURE: a black-box optimization of regularization parameters for general denoising algorithms. IEEE Trans. Image Process. 17(9), 1540–1554 (2008)

    Article  MathSciNet  Google Scholar 

  23. Donoho, D.L., Johnstone, I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Salmon, J.: On two parameters for denoising with Non-Local Means. IEEE Signal Process. Lett. 17, 269–272 (2010)

    Article  Google Scholar 

  25. Zimmer, S., Didas, S., Weickert, J.: A rotationally invariant block matching strategy improving image denoising with non-local means. In: LNLA (2008)

    Google Scholar 

  26. Wang, J., Guo, Y.W., Ying, Y., Liu, Y.L., Peng, Q.S.: Fast non-local algorithm for image denoising. In: ICIP, pp. 1429–1432 (2006)

    Google Scholar 

  27. Darbon, J., Cunha, A., Chan, T.F., Osher, S., Jensen, G.J.: Fast nonlocal filtering applied to electron cryomicroscopy. In: ISBI, pp. 1331–1334 (2008)

    Google Scholar 

  28. Dalalyan, A.S., Tsybakov, A.B.: Aggregation by exponential weighting, sharp pac-bayesian bounds and sparsity. Mach. Learn. 72(1-2), 39–61 (2008)

    Article  Google Scholar 

  29. Salmon, J., Le Pennec, E.: NL-Means and aggregation procedures. In: ICIP, pp. 2977–2980 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deledalle, CA., Duval, V., Salmon, J. (2012). Anisotropic Non-Local Means with Spatially Adaptive Patch Shapes. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2011. Lecture Notes in Computer Science, vol 6667. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24785-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24785-9_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24784-2

  • Online ISBN: 978-3-642-24785-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics