Skip to main content

A Parameter-Free Method for Discovering Generalized Clusters in a Network

  • Conference paper
Book cover Discovery Science (DS 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6926))

Included in the following conference series:

  • 1346 Accesses

Abstract

We show that an MDL-based graph clustering method may be used for discovering generalized clusters from a graph and then extend it so that the input is a network. We define intuitively that generalized clusters contain at least a cluster in which nodes are connected sparsely and the cluster is connected either densely to another cluster or sparsely to another conventional cluster. The first characteristic of the MDL-based graph clustering is a direct outcome of an entropy function used in measuring the encoding length of clusters and the second one is realized through our new encoding method. Experiments using synthetic and real data sets give promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Proc. of 11th Europ. Symp. Algorithms, pp. 568–579 (2003)

    Google Scholar 

  2. Brin, S., Page, L.: The Anatomy of a Large-scale Hypertextual Web Search Engine. Comput. Netw. ISDN Syst. 30, 107–117 (1998)

    Article  Google Scholar 

  3. Chakrabarti, D.: AutoPart: Parameter-Free Graph Partitioning and Outlier Detection. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 112–124. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Chakrabarti, D., Papadimitriou, S., Modha, D.S., Faloutsos, C.: Fully Automatic Cross-Associations. In: Proc. KDD, pp. 79–88 (2004)

    Google Scholar 

  5. Clauset, A., Newman, M.E.J., Moore, C.: Finding Community Structure in Very Large Networks. Phys. Rev. E 70, 066111 (2004)

    Article  Google Scholar 

  6. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted Graph Cuts without Eigenvectors: A Multilevel Approach. IEEE PAMI 29, 1944–1957 (2007)

    Article  Google Scholar 

  7. van Dongen, S.M.: Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht, The Netherlands (2000)

    Google Scholar 

  8. Girvan, M., Newman, M.E.J.: Community Structure in Social and Biological Networks. PNAS 99(12), 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Phys Rev. E 69, 066133 (2003)

    Article  Google Scholar 

  10. Newman, M.E.J.: Analysis of Weighted Networks. Phys. Rev. E 70, 056131 (2004)

    Article  Google Scholar 

  11. Newman, M.E.J., Girvan, M.: Finding and Evaluating Community Structure in Networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  12. Newman, M.E.J., Leicht, E.A.: Mixture Models and Exploratory Analysis in Networks. PNAS 104(23), 9564–9569 (2007)

    Article  MATH  Google Scholar 

  13. Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random Walks. Journal of Graph Algorithms and Applications 10, 284–293 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection. Physical Review E 74, 016110 (2006)

    Article  MathSciNet  Google Scholar 

  15. Rosvall, M., Bergstrom, C.T.: An Information-Theoretic Framework for Resolving Community Structure in Complex Networks. PNAS 104(18), 7327–7331 (2007)

    Article  Google Scholar 

  16. Rosvall, M., Bergstrom, C.T.: Maps of Information Flow Reveal Community Structure in Complex Networks. PNAS 105(4), 1118–1123 (2008)

    Article  Google Scholar 

  17. Shi, J., Malik, J.: Normalized Cuts and Image Segmentation. IEEE PAMI 22(8), 888–905 (2000)

    Article  Google Scholar 

  18. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: GraphScope: Parameter-Free Mining of Large Time-Evolving Graphs. In: Proc. KDD, pp. 687–696 (2007)

    Google Scholar 

  19. Watts, D.J.: Small Worlds: the Dynamics of Networks between Order and Randomness. Princeton University Press, Princeton (1999)

    MATH  Google Scholar 

  20. Zeng, Z., Wang, J., Zhou, L., Karypis, G.: Coherent Closed Quasi-clique Discovery from Large Dense Graph Databases. In: Proc. KDD, pp. 797–802 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hirai, H., Chou, BH., Suzuki, E. (2011). A Parameter-Free Method for Discovering Generalized Clusters in a Network. In: Elomaa, T., Hollmén, J., Mannila, H. (eds) Discovery Science. DS 2011. Lecture Notes in Computer Science(), vol 6926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24477-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24477-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24476-6

  • Online ISBN: 978-3-642-24477-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics