Skip to main content

3D Segmentation in CT Imagery with Conditional Random Fields and Histograms of Oriented Gradients

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7009))

Abstract

In this paper we focus on the problem of 3D segmention in volumetric computed tomography imagery to identify organs in the abdomen. We propose and evaluate different models and modeling strategies for 3D segmentation based on traditional Markov Random Fields (MRFs) and their discriminative counterparts known as Conditional Random Fields (CRFs). We also evaluate the utility of features based on histograms of oriented gradients or HOG features. CRFs and HOG features have independently produced state of the art performance in many other problem domains and we believe our work is the first to combine them and use them for medical image segmentation. We construct 3D lattice MRFs and CRFs, use variational message passing (VMP) for learning and max-product (MP) inference for prediction in the models. These inference and learning approaches allow us to learn pairwise terms in random fields that are non-submodular and are thus very flexible. We focus our experiments on abdominal organ and region segmentation, but our general approach should be useful in other settings. We evaluate our approach on a larger set of anatomical structures found within a publicly available liver database and we provide these labels for the dataset to the community for future research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blake, A., Rother, C., Brown, M., Perez, P., Torr, P.: Interactive image segmentation using an adaptive GMMRF model. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 428–441. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23 (2001)

    Google Scholar 

  3. Criminisi, A., Shotton, J., Robertson, D.P., Konukoglu, E.: Regression forests for efficient anatomy detection and localization in CT studies. In: MCV, pp. 106–117 (2010)

    Google Scholar 

  4. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE CVPR, pp. 886–893. IEEE Computer Society, Washington, DC, USA (2005)

    Google Scholar 

  5. Graf, F., Kriegel, H.P., Schubert, M., Strukelj, M., Cavallaro, A.: Fully automatic detection of the vertebrae in 2d ct images. In: SPIE Medical Imaging, vol. 7962 (2011)

    Google Scholar 

  6. Kumar, S., Hebert, M.: Discriminative random fields: A discriminative framework for contextual interaction in classification. In: ICCV, pp. 1150–1157 (2003)

    Google Scholar 

  7. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data (2001)

    Google Scholar 

  8. Lee, C.H., Wang, S., Murtha, A., Brown, M.R.G., Greiner, R.: Segmenting brain tumors using pseudo–conditional random fields. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 359–366. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Ling, H., et al.: Hierarchical, learning-based automatic liver segmentation. In: IEEE CVPR (2008)

    Google Scholar 

  10. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2) (2004)

    Google Scholar 

  11. Motwani, K., Adluru, N., Hinrichs, C., Alexander, A.L., Singh, V.: Epitome driven 3-d diffusion tensor image segmentation: on extracting specific structures. In: NIPS (2010)

    Google Scholar 

  12. Seifert, S., et al.: Hier. parsing and semantic nav. of full body CT data. In: Proc. SPIE (2009)

    Google Scholar 

  13. Tsechpenakis, G., Wang, J., Mayer, B., Metaxas, D.: Coupling CRFs and deformable models for 3D medical image segmentation, pp. 1–8 (2007)

    Google Scholar 

  14. Varshney, L.: Abdominal organ segmentation in ct scan images: A survey (2002)

    Google Scholar 

  15. Winn, J., Bishop, C.M.: Variational message passing. J. Mach. Learn. Res. 6, 661–694 (2005)

    MathSciNet  MATH  Google Scholar 

  16. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden markov random field model and the EM algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bhole, C., Morsillo, N., Pal, C. (2011). 3D Segmentation in CT Imagery with Conditional Random Fields and Histograms of Oriented Gradients. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds) Machine Learning in Medical Imaging. MLMI 2011. Lecture Notes in Computer Science, vol 7009. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24319-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24319-6_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24318-9

  • Online ISBN: 978-3-642-24319-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics