Skip to main content

Compressed Sensing Meets the Human Visual System

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 6935))

Abstract

Foveation principles suggested by the Human Visual System have already been used with significant success for compression purposes on both 1D and 2D data. The method provides spatially variable quality of the reconstructed information, enabling better approximation of specific regions of interest. Combining this approach with the principles behind Compressed Sensing theory enable further improvement of compression ratio performances, as indicated by experimental results on a set of natural images.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olshausen, B.A., Field, D.J.: Natural image statistics and efficient coding. Network: Comput. Network: Comput. in Neural Syst. 7, 333–339 (1996)

    Article  Google Scholar 

  2. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural Computation 12, 337–365 (2000)

    Article  Google Scholar 

  3. Chang, E.C., Mallat, S., Yap, C.: Wavelet foveation. J. Appl. Comput. Harmonic Analysis 9, 312–335 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Needell, D., Tropp, J.: CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. J. Appl. Comput. Harmonic Analysis 26, 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donoho, D., Tsaig, Y., Drori, I., Starck, J.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Technical Report 2006-02, Stanford University (2006)

    Google Scholar 

  7. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.: Model-based Compressive Sensing. IEEE Trans. Inf. Theory 56, 1982–2001 (2010)

    Article  MathSciNet  Google Scholar 

  8. Larcom, R., Coffman, T.R.: Foveated image formation through compressive sensing. In: IEEE Southwest Symp. Image Anal. Interp., pp. 145–148. IEEE Press, Los Alamitos (2010)

    Google Scholar 

  9. Tsaig, Y., Donoho, D.: Extensions of compressed sensing. Signal Processing 86, 549–571 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ciocoiu, I.B. (2011). Compressed Sensing Meets the Human Visual System. In: Lee, G., Howard, D., Ślęzak, D. (eds) Convergence and Hybrid Information Technology. ICHIT 2011. Lecture Notes in Computer Science, vol 6935. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24082-9_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-24082-9_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-24081-2

  • Online ISBN: 978-3-642-24082-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics