Skip to main content

Ecological Aspects of Water Desalination Improving Surface Properties of Reverse Osmosis Membranes

  • Chapter
  • First Online:
Green Tribology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The lack of fresh clean water is an economical and ecological problem which affects half of humanity. More than 97.5% of all water on the Earth is seawater, so the ability to harvest even a small fraction as fresh water would have a huge impact on water scarcity. Reverse osmosis (RO) is currently the main technique of seawater desalination. During RO, salt water under pressure exceeding the fluids osmotic pressure is forced through a semipermeable membrane. RO requires significant energy inputs and affects the environment due the greenhouse gas emissions (usually associated with an external power source), the output of brine with high salt concentration, and other negative effects. Improving the efficiency and environmental impact of RO plants involves several challenges, some of which are related to surface science and tribology. This involves mimicking water filtration by cell membranes, as well as creating biomimetic antifouling coatings on membranes. We present a comprehensive review of RO and other desalination techniques and suggest how a composite material can improve permeability and antifouling properties of RO membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anonymous, GLAAS 2010: UN-Water global annual assessment of sanitation and drinking-water (2010a), http://whqlibdoc.who.int/publications/2010/9789241599351_eng.pdf. Accessed 16 May 2011

  2. Anonymous, The 3rd United Nations world water development report: water in a changing world (2009), http://www.unesco.org/water/wwap/wwdr/wwdr3/tableofcontents.shtml. Accessed 16 May 2011

  3. Anonymous, United Nation news center (2011a), http://www.un.org/apps/news/story.asp?NewsID=38253&Cr=Population. Accessed 16 May 2011

  4. K. Wangnick, IDA Worldwide Desalting Plants Inventory. Report No. 18. Wangnick Consulting, Gnarrenburg (2004)

    Google Scholar 

  5. K. Wangnick, 2002 IDA Worldwide Desalting Plants Inventory. Wangnick Consulting (for the International Desalination Association) Gnarrenburg (2002)

    Google Scholar 

  6. K. Kranhold, Water, water everywhere. The Wall Street Journal. 17 January 2008 (2008), http://online.wsj.com/article/SB120053698876396483.html. Accessed 10 May 2011

  7. Anonymous, 21st GWI/International Desalination Association, Worldwide Desalting Plant Inventory: Global Market Snapshot (2008), http://www.idadesal.org/PDF/ida%20desalination%20snapshot_october%202008.pdf. Accessed 25 May 2011

  8. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008)

    Article  Google Scholar 

  9. E. Bormashenko, A. Schechter, O. Stanevsky, T. Stein, S. Balter, A. Musin, Y. Bormashenko, R. Pogreb, Z. Barkay, D. Aurbach, Free-standing, thermostable, micrometer-scale honeycomb polymer films and their properties. Macromol. Mater. Eng. 293, 872–877 (2008)

    Article  Google Scholar 

  10. P. Nednoor, V.G. Gavalas, N. Chopra, B.J. Hinds, L.G. Bachas, Carbon nanotube based biomimetic membranes: mimicking protein channels regulated by phosphorylation. J. Mater. Chem. 17, 1755–1757 (2007)

    Article  Google Scholar 

  11. R.J. Forbes, A Short History of the Art of Distillation: From the Beginnings up to the Death of Cellier Blumenthal (Brill, Leiden, 1970)

    Google Scholar 

  12. S. Kalogirou, Survey of solar desalination systems and system selection. Energy 22, 69–81 (1997)

    Article  Google Scholar 

  13. G. Fiorenza, V.K. Sharma, G. Braccio, Techno-economic evaluation of a solar powered water desalination plant. Energy Convers. Manag. 44, 2217–2240 (2003)

    Article  Google Scholar 

  14. C. Koroneos, A. Dompros, G. Roumbas, Renewable energy driven desalination systems modeling. J Cleaner Prod. 15, 449–464 (2007)

    Article  Google Scholar 

  15. H.M. Qiblawey, F. Banat, Solar thermal desalination technologies. Desalination 220, 633–644 (2008)

    Article  Google Scholar 

  16. T. Ayhan, H. Al Madani, Feasibility study of renewable energy powered seawater desalination technology using natural vacuum technique. Renew. Energy 35, 506–514 (2010)

    Article  Google Scholar 

  17. L. Garcia-Rodriguez, Renewable energy applications in desalination: state of the art. Sol. Energy 75, 381–393 (2003)

    Article  Google Scholar 

  18. A. Subramani, M. Badruzzaman, J. Oppenheimer, J.G. Jacangelo, Energy minimization strategies and renewable energy utilization for desalination: a review. Water Res. 45, 1907–1920 (2011)

    Article  Google Scholar 

  19. M.A. Eltawil, Z. Zhengming, L. Yuan, A review of renewable energy technologies integrated with desalination systems. Renew. Sustain. Energy Rev. 13, 2245–2262 (2009)

    Article  Google Scholar 

  20. L.R. Evans, J.E. Miller, Sweeping Gas Membrane Desalination Using Commercial Hydrophobic Hollow Fiber Membranes. SAND 2002-0138 (Sandia National Laboratories, 2002)

    Google Scholar 

  21. R.S. Silver, Multi-stage flash distillation. The first 10 years. Desalination 9, 3–17 (1971)

    Article  Google Scholar 

  22. K.V. Reddy, N. Ghaffour, Overview of the cost of desalinated water and costing methodologies. Desalination 205, 340–353 (2007)

    Article  Google Scholar 

  23. S.A. Kalogirou, Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci. 31, 242–281 (2005)

    Article  Google Scholar 

  24. M. Al-Shammiri, M. Safari, Multi-effect distillation plants: state of the art. Desalination 126, 45–59 (1999)

    Article  Google Scholar 

  25. T. Dabbagh, P. Sadler, A. Al Saquabi, Desalination: An Emergent Option, in Water in the Arab World: Perspectives and Prognoses, 1st edn., ed. by P. Rogers, P. Lydon (Harvard University Press, Cambridge, 1994)

    Google Scholar 

  26. N.M. Wade, Technical and economic evaluation of distillation and reverse osmosis desalination processes. Desalination 93, 343–363 (1993)

    Article  Google Scholar 

  27. F.M. Mubeen, Workshop identifies options for nuclear desalination. Int. Desalin. Water Reuse 11, 15–19 (2001)

    Google Scholar 

  28. Anonymous, IAEA Introduction of Nuclear Desalination; a Guidebook. Technical Report Series no. 400 (International Atomic Energy Agency, Vienna, 2000)

    Google Scholar 

  29. C. Fernandez-Lopez, A. Viedma, R. Herrero, A.S. Kaiser, Seawater integrated desalination plant without brine discharge and powered by renewable energy systems. Desalination 235, 179–198 (2009)

    Article  Google Scholar 

  30. C. Mustacchi, V. Cena, Solar Water Distillation, Technology for solar energy utilisation (New York, 1978)

    Google Scholar 

  31. R.M. Morris, W.T Hanbury, Renewable energy and desalination—a review. in Proceedings of the new technologies for the use of renewable energy sources in water desalination, 1991

    Google Scholar 

  32. Anonymous, Steam Jet Compressor in Refrigeration Engineering, G.U.N.T. Gerätebau GmbH (2010b), http://www.gunt.de/networks/gunt/sites/s1/mmcontent/produktbilder/06135200/Datenblatt/0613200%202.pdf. Accessed 17 May 2011

  33. A. Midilli, Waste water distillation via natural vacuum technique. Dissertation, Karadeniz Technical University, 1997

    Google Scholar 

  34. A. Midilli, T. Ayhan, Natural vacuum distillation technique—part I: theory and basics. Int. J. Energy Res. 28, 355–371 (2004)

    Article  Google Scholar 

  35. A. Midilli, T. Ayhan, Natural vacuum distillation technique—part II: Experimental investigation. Int. J. Energy Res. 28, 373–389 (2004)

    Article  Google Scholar 

  36. S. Al-Kharabsheh, D.Y. Goswami, Analysis of an innovative water desalination system using low-grade solar heat. Desalination 156, 323–332 (2003)

    Article  Google Scholar 

  37. R. Oldach, Matching renewable energy with desalination plants (Muscat, Sultanate of Oman: The Middle East Desalination Research Center, MEDRC). MEDRC Series of R&D Reports, MEDRC Project: 97-AS-006a (2001)

    Google Scholar 

  38. L.H. Shaffer, M.S. Mintz, Electrodialysis, in Principles of Desalination, Part A, 2nd edn., ed. by K.S. Spiegler, A.D.K. Laird (Academic Press, New York, 1980)

    Google Scholar 

  39. E. Barbier, Geothermal energy technology and current status: an overview. Renew. Sustain. Energy Rev. 6, 3–65 (2002)

    Article  Google Scholar 

  40. K. Bourouni, M.T. Chaibi, T. Tadrist, Water desalination by humidification and dehumidification of air: state of the art. Desalination 137, 167–176 (2001)

    Article  Google Scholar 

  41. H.N. Morse, Ueber eine neue Darstellungsmethode der Acetylamidophenole. Berichte der deutschen chemischen Gesellschaft 11, 232–233 (1878). doi:10.1002/cber.18780110151

    Article  Google Scholar 

  42. J.H. vant Hoff, The Role of Osmotic Pressure in the Analogy Between Solutions and Gases, in The Modern Theory of Solution, 1st edn., ed. by H.C. Jones (Harper & Brothers Publishers, London, 1899)

    Google Scholar 

  43. W.R. Salzman, Colligative properties (2004), http://www.chem.arizona.edu/~salzmanr/480a/480ants/colprop/colprop.html. Accessed 13 May 2011

  44. J. Glater, The early history of reverse osmosis membrane development. Desalination 117, 297–309 (1998)

    Article  Google Scholar 

  45. Anonymous, Construction of COWAY R/O membrane filter (2011b), http://www.coway-usa.com/technology/01_WaterFiltrationSystem_03.html. Accessed 17 May 2011

  46. K.S. Spiegler, Y.M. El-Sayed, The energetics of desalination processes. Desalination 134, 109–128 (2001)

    Article  Google Scholar 

  47. T.F. Seacord, S.D. Cooker, J. MacHarg, Affordable desalination collaboration 2005 results. Int. Desalin. Water Reuse Q. 16, 1–10 (2006)

    Google Scholar 

  48. C.H. Nielsen, Major Intrinsic Proteins in Biomimetic Membranes, in MIPs and Their Role in the Exchange of Metalloids, 1st edn., ed. by T.P. Jahn, G.P. Bienert (Landes Bioscience, Austin, 2009)

    Google Scholar 

  49. J.K. Holt, H.G. Park, Y. Wang, M. Stadermann, A.B. Artyukhin, C.P. Grigoropoulos, A. Noy, O. Bakajin, Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006)

    Article  Google Scholar 

  50. Anonymous, Sandia National Laboratory: Research and Development, Membrane Technologies (2011c), http://www.sandia.gov/water/desal/research-dev/membrane-tech.html. Accessed 15 April 2011

  51. Anonymous, Lawrence Livermore National Laboratory, Nanotube Membranes Offer Possibility of Cheaper Desalination (2006), https://www.llnl.gov/news/newsreleases/2006/NR-06-05-06.html. Accessed 15 Apr 2011

  52. M. Nosonovsky, B. Bhushan, Superhydrophobic surfaces and emerging applications: non-adhesion, energy, green engineering. Curr. Opin. Colloid Interface Sci. 14, 270–280 (2009)

    Article  Google Scholar 

  53. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano, Transparent ultra water repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating. Appl. Surf. Sci. 244, 619–622 (2005)

    Article  Google Scholar 

  54. H. Yabu, M. Shimomura, Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 17, 5231–5234 (2005)

    Article  Google Scholar 

  55. M. Nosonovsky, V. Hejazi, A.E, Nyong, P.K. Rohatgi, Metal Matrix Composites for Sustainable Lotus-Effect Surfaces (submitted to Langmuir, 2011)

    Google Scholar 

  56. M. Nosonovsky, B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchial Surfaces: Friction Superhydrophobicity and Biomimetics (Springer, Berlin, 2008)

    Google Scholar 

  57. Y.C. Jung, B. Bhushan, Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 25, 14165–14173 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the University of Wisconsin-Milwaukee (UWM) Research Growth Initiative (RGI) NSF I/UCRC for Water Equipment and Policy, and UWM Research Foundation Bradley Catalyst grants and the UWM SURF program. Authors are also thankful to Prof. Pradip K. Rohatgi from the UWM Center for Composite materials for filter samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Nosonovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hurd, T.G., Beyhaghi, S., Nosonovsky, M. (2012). Ecological Aspects of Water Desalination Improving Surface Properties of Reverse Osmosis Membranes. In: Nosonovsky, M., Bhushan, B. (eds) Green Tribology. Green Energy and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23681-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23681-5_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23680-8

  • Online ISBN: 978-3-642-23681-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics