Skip to main content

N-Type Oxide Semiconductor Thin-Film Transistors

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 156))

Abstract

This chapter gives an overview about GIZO TFTs, comprising an introductory section about generic TFT structure and operation, different semiconductor technologies for TFTs – with special emphasis on AOSs and particularly on GIZO – and then some experimental results obtained for GIZO TFTs fabricated in CENIMAT. Thin-film transistors (TFTs) are important electronic devices which are predominantly used as On/Off switches in active matrix backplanes of flat panel displays (FPDs), namely liquid crystal displays (LCDs) and organic light emitting device (OLED) displays. Even if a-Si:H is still dominating the TFT market in terms of semiconductor technology, oxide semiconductors are emerging as one of the most promising alternatives for the next generation of TFTs, bringing the possibility of having fully transparent devices, low processing temperature, low cost, high performance and electrically stable properties [1, 2]. Amorphous oxide semiconductors (AOS) such as Gallium–Indium–Zinc oxide (GIZO) [3, 4], even if fabricated at temperatures below 150C, are currently capable of providing transistors with field-effect mobility (μFE) exceeding \(20\,{\mathrm{cm}}^{2}\,{\mathrm{V}}^{-1}\,{\mathrm{s}}^{-1}\), threshold voltage (V T) close to 0 V, On/Off ratios above 108, subthreshold swing (S) around 0. 20 V dec−1 and fully recoverable V T shift (ΔV T) lower than 0.5 V after 24 h stress with constant drain current of 10 μA.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    V G , V D , I G and I D are used throughout this chapter, given that the source electrode is always assumed to be grounded, but these notations have exactly the same meaning as V GS , V DS , I GS and I DS .

  2. 2.

    Given the broad range of methodologies for V T determination (see, for instance [13]), large ambiguity can arise when comparing different devices using this parameter. As a less ambiguous concept, V on is largely used in literature, simply corresponding to the V G at which I D starts to abruptly increase as seen in a \(log{I}_{D} --{V }_{G}\) plot, or in other words, the V G necessary to fully turn-off the transistor [14].

  3. 3.

    More details about different semiconductor material technologies for TFTs are given in section 2.2.

  4. 4.

    Unless otherwise stated, all the oxide semiconductors reported in this chapter are n-type. p-type oxides only recently started to be explored for TFT applications, exhibiting considerably lower performance than n-type ones [1922].

  5. 5.

    Most of the organic TFTs are p-type, i.e., the conduction mechanism is due to holes rather than electrons.

  6. 6.

    Note that the given references are just a few examples of the large number of reported works, with many more being available, specially for the period comprised between 2007 and 2009.

  7. 7.

    Given this effect, which arises as a consequence of the TFT measurement protocol used in this work, hysteresis is not used systematically throughout this chapter to evaluate charge trapping or other instability phenomena on the TFTs, being ΔV on used instead.

  8. 8.

    During our research work we also verified that for the same sputtering conditions, N is always higher for In2O3 than for ZnO films.

  9. 9.

    Note that most of the traps at the dielectric/semiconductor interface should already be filled even if the assumptions of \({\Phi }_{{G}^{-}}{\Phi }_{S} < 0\) and positive charges contained in the dielectric are not valid, because electrons from the high N semiconductor can be captured by the lower energy trap states at that interface.

  10. 10.

    Note that in the case of plasma species containing H + , the incorporation of this element in oxide semiconductors can also form shallow donor states that contribute to the increase of N, as confirmed by first-principle calculations for GIZO [98]. On the other hand, for oxygen containing plasmas, the incorporation of this element can lead to acceptor-like surface states that reestablish the depletion layer close to the oxide semiconductor’s back surface [96, 97, 99].

  11. 11.

    Note that in fig. 16 the Off -current of both nonpassivated and passivated devices is similar, which seems to contradict the results shown in fig. 15b. However, this is an artifact caused by the higher noise level of the measurement system used to obtain the results depicted in fig. 16.

References

  1. R. Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, E. Fortunato, J. Appl. Phys. 101, p. 044505 (2007)

    Article  Google Scholar 

  2. E. Fortunato, L. Pereira, P. Barquinha, I. Ferreira, R. Prabakaran, G. Goncalves, A. Goncalves, R. Martins, Philos. Mag. 89, p. 2741 (2009)

    CAS  Google Scholar 

  3. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, p. 488 (2004)

    Google Scholar 

  4. P. Barquinha, L. Pereira, G. Goncalves, R. Martins, E. Fortunato, J. Electrochem. Soc. 156, p. H161 (2009)

    Article  CAS  Google Scholar 

  5. A.C. Tickle, Thin-Film Transistors – A New Approach to Microelectronics, (Wiley, New York 1969)

    Google Scholar 

  6. C.R. Kagan, P. Andry, Thin-Film Transistors, (Marcel Dekker, Inc., New York 2003)

    Book  Google Scholar 

  7. J.-H. Lee, D.N. Liu, S.-T. Wu, Introduction to Flat Panel Displays, (Wiley, West Sussex, UK 2008)

    Google Scholar 

  8. E.S. Yang, Microelectronic Devices, (McGraw-Hill, Singapore 1988)

    Google Scholar 

  9. R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, p. 733 (2003)

    Google Scholar 

  10. S.M. Sze, Physics of Semiconductor Devices, (Wiley, New York 1981)

    Google Scholar 

  11. T. Ytterdal, Y. Cheng, T.A. Fjeldly, Device Modeling for Analog and RF CMOS Circuit Design, (Wiley, New York 2003)

    Book  Google Scholar 

  12. R.L. Hoffman, Solid-State Electron 50, p. 784 (2006)

    Google Scholar 

  13. A. Ortiz-Conde, F.J.G. Sanchez, J.J. Liou, A. Cerdeira, M. Estrada, Y. Yue, Microelectron. Reliabil. 42, p. 583 (2002)

    Google Scholar 

  14. R.L. Hoffman, J. Appl. Phys. 95 p. 5813 (2004)

    Article  CAS  Google Scholar 

  15. D.K. Schroder, Semiconductor Material and Device Characterization, (Wiley, New Jersey 2006)

    Google Scholar 

  16. W. Lim, S.H. Kim, Y.L. Wang, J.W. Lee, D.P. Norton, S.J. Pearton, F. Ren, I.I. Kravchenko, J. Vac. Sci. Technol. B 26, p. 959. (2008)

    Google Scholar 

  17. P.G. Lecomber, W.E. Spear, A. Ghaith, Electron. Lett. 15, p. 179 (1979)

    CAS  Google Scholar 

  18. A. Madan, R. Martins, Philos. Mag. 89, p. 2431 (2009)

    CAS  Google Scholar 

  19. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H.K. Park, C.S. Hwang, R. Martins, Appl. Phys. Lett. 97, p. 052105 (2010)

    Google Scholar 

  20. E. Fortunato, V. Figueiredo, P. Barquinha, E. Elamurugu, R. Barros, G. Goncalves, S.H.K. Park, C.S. Hwang, R. Martins, Appl. Phys. Lett. 96, p. 239902 (2010)

    Google Scholar 

  21. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, p. 032113 (2008)

    Google Scholar 

  22. K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, p. 202107 (2008)

    Google Scholar 

  23. H.A. Klasens, H. Koelmans, Solid-State Electron 7, p. 701 (1964)

    Google Scholar 

  24. G.F. Boesen, J.E. Jacobs, Proc. Institute Electrical Electronics Eng. 56, p. 2094 (1968)

    Google Scholar 

  25. A. Aoki, H. Sasakura, Jpn. J. Appl. Phys. 9, p. 582 (1970)

    Article  CAS  Google Scholar 

  26. M.W.J. Prins, K.O. GrosseHolz, G. Muller, J.F.M. Cillessen, J.B. Giesbers, R.P. Weening, R.M. Wolf, Appl. Phys. Lett. 68, p. 3650 (1996)

    CAS  Google Scholar 

  27. C.H. Seager, D.C. McIntyre, W.L. Warren, B.A. Tuttle, Appl. Phys. Lett. 68, p. 2660 (1996)

    CAS  Google Scholar 

  28. J.F. Wager, D.A. Keszler, R.E. Presley, Transparent Electronics, (Springer, New York 2008)

    Google Scholar 

  29. S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, T. Kawai, J. Appl. Phys. 93, p. 1624 (2003)

    Article  CAS  Google Scholar 

  30. P.F. Carcia, R.S. McLean, M.H. Reilly, G. Nunes, Appl. Phys. Lett. 82, p. 1117 (2003)

    CAS  Google Scholar 

  31. J. Nishii, F.M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, M. Kawasaki, Jpn. J. Appl. Phys. Part 2 – Lett. 42, p. L347 (2003)

    Google Scholar 

  32. E.M.C. Fortunato, P.M.C. Barquinha, A. Pimentel, A.M.F. Goncalves, A.J.S. Marques, R.F.P. Martins, L.M.N. Pereira, Appl. Phys. Lett. 85, p. 2541 (2004)

    CAS  Google Scholar 

  33. E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, R. Martins, Zinc Oxide Thin-Film Transistors, In: N.H.T.E. Nickel, Editor, NATO Advanced Research Workshop on Zinc Oxide as a Material for Micro- and Optoelectronic Applications, (Springer, St Petersburg, Russia 2004)

    Google Scholar 

  34. B.J. Norris, J. Anderson, J.F. Wager, D.A. Keszler, J. Phys. D-Appl. Phys. 36, p. L105 (2003)

    CAS  Google Scholar 

  35. F.M. Hossain, J. Nishii, S. Takagi, A. Ohtomo, T. Fukumura, H. Fujioka, H. Ohno, H. Koinuma, M. Kawasaki, J. Appl. Phys. 94, p. 7768 (2003)

    Article  CAS  Google Scholar 

  36. H.S. Bae, M.H. Yoon, J.H. Kim, S. Im, Appl. Phys. Lett. 83, p. 5313 (2003)

    CAS  Google Scholar 

  37. H.S. Bae, S. Im, Thin Solid Films 469–470, p. 75 (2004)

    Google Scholar 

  38. R.E. Presley, C.L. Munsee, C.H. Park, D. Hong, J.F. Wager, D.A. Keszler, J. Phys. D-Appl. Phys. 37, p. 2810 (2004)

    CAS  Google Scholar 

  39. D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, C. Zhou, Appl. Phys. Lett. 82, p. 112 (2003)

    CAS  Google Scholar 

  40. Y.W. Heo, L.C. Tien, Y. Kwon, D.P. Norton, S.J. Pearton, B.S. Kang, F. Ren, Appl. Phys. Lett. 85, p. 2274 (2004)

    CAS  Google Scholar 

  41. Q.H. Li, Q. Wan, Y.X. Liang, T.H. Wang, Appl. Phys. Lett. 84, p. 4556 (2004)

    CAS  Google Scholar 

  42. Z. Fan, D. Wang, P.-C. Chang, W.-Y. Tseng, J.G. Lu, Appl. Phys. Lett. 85, p. 5923 (2004)

    CAS  Google Scholar 

  43. K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Science 300, p. 1269 (2003)

    Google Scholar 

  44. H.Q. Chiang, J.F. Wager, R.L. Hoffman, J. Jeong, D.A. Keszler, Appl. Phys. Lett. 86, p. 013503 (2005)

    Google Scholar 

  45. P. Gorrn, M. Sander, J. Meyer, M. Kroger, E. Becker, H.H. Johannes, W. Kowalsky, T. Riedl, Adv. Mater. 18, p. 738 (2006)

    Google Scholar 

  46. W.B. Jackson, R.L. Hoffman, G.S. Herman, Appl. Phys. Lett. 87, p. 193503 (2005)

    Google Scholar 

  47. N.L. Dehuff, E.S. Kettenring, D. Hong, H.Q. Chiang, J.F. Wager, R.L. Hoffman, C.H. Park, D.A. Keszler, J. Appl. Phys. 97, p. 064505 (2005)

    Article  Google Scholar 

  48. P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, J. Non-Cryst. Solids 352, p. 1749 (2006)

    Article  CAS  Google Scholar 

  49. B. Yaglioglu, H.Y. Yeom, R. Beresford, D.C. Paine, Appl. Phys. Lett. 89, p. 062103 (2006)

    Google Scholar 

  50. D.C. Paine, B. Yaglioglu, Z. Beiley, S. Lee, Thin Solid Films 516, p. 5894 (2008)

    Google Scholar 

  51. G. Goncalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, E. Fortunato, Electrochem. Solid State Lett. 13, p. II20 (2010)

    Google Scholar 

  52. R.E. Presley, D. Hong, H.Q. Chiang, C.M. Hung, R.L. Hoffman, J.F. Wager, Solid-State Electron 50, p. 500 (2006)

    Google Scholar 

  53. A. Suresh, P. Wellenius, A. Dhawan, J. Muth, Appl. Phys. Lett. 90, p. 123512 (2007)

    Google Scholar 

  54. J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, S.I. Kim, Appl. Phys. Lett. 90, p. 262106 (2007)

    Google Scholar 

  55. D. Kang, I. Song, C. Kim, Y. Park, T.D. Kang, H.S. Lee, J.W. Park, S.H. Baek, S.H. Choi, H. Lee, Appl. Phys. Lett. 91, p. 091910 (2007)

    Google Scholar 

  56. H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, J. Non-Cryst. Solids 354, p. 2796 (2008)

    Article  CAS  Google Scholar 

  57. T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 90, p. 242114 (2007)

    Google Scholar 

  58. E.M.C. Fortunato, L.M.N. Pereira, P.M.C. Barquinha, A.M.B. do Rego, G. Goncalves, A. Vila, J.R. Morante, R.F.P. Martins, Appl. Phys. Lett. 92, p. 222103 (2008)

    Google Scholar 

  59. http://www.qmc.ufsc.br/qmcweb/artigos/historia_descoberta.htm

  60. D. Redinger, V. Subramanian, IEEE Trans. Electron Devices 54, p. 1301 (2007)

    Article  CAS  Google Scholar 

  61. H.D. Kim, J.K. Jeong, H.J. Chung, Y.G. Mo, Invited paper: Technological challenges for large-size AMOLED display, International Symposium of the Society-for-Information-Display (SID 2008), (Soc Information Display, Los Angeles, CA 2008)

    Google Scholar 

  62. J.H. Jeon, M.C. Lee, K.C. Park, S.H. Jung, M.K. Han, International Electron Devices Meeting 2000, Technical Digest, IEEE, New York (2000)

    Google Scholar 

  63. D.L. Staebler, C.R. Wronski, Appl. Phys. Lett. 31, p. 292 (1977)

    CAS  Google Scholar 

  64. P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, S. Kipp, Appl. Phys. Lett. 90, p. 063502 (2007)

    Google Scholar 

  65. P.F. Carcia, R.S. McLean, M.H. Reilly, J. Soc. Inf. Disp. 13, p. 547 (2005)

    CAS  Google Scholar 

  66. B.G. Lewis, D.C. Paine, MRS Bull. 25, p. 22 (2000)

    Google Scholar 

  67. J.R. Bellingham, W.A. Phillips, C.J. Adkins, J. Phys.-Condens. Matter 2, p. 6207 (1990)

    Article  CAS  Google Scholar 

  68. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, p. R123 (1986)

    Article  CAS  Google Scholar 

  69. H.Q. Chiang, D. Hong, C.M. Hung, R.E. Presley, J.F. Wager, C.H. Park, D.A. Keszler, G.S. Herman, J. Vac. Sci. Technol. B 24, p. 2702 (2006)

    Article  CAS  Google Scholar 

  70. H.Q. Chiang, B.R. McFarlane, D. Hong, R.E. Presley, J.F. Wager, J. Non-Cryst. Solids 354, p. 2826 (2008)

    Article  CAS  Google Scholar 

  71. J.H. Jeong, H.W. Yang, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, J. Song, C.S. Hwang, Electrochem. Solid State Lett. 11, p. H157 (2008)

    Article  CAS  Google Scholar 

  72. H.H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, C.C. Wu, Appl. Phys. Lett. 92, p. 133503 (2008)

    Google Scholar 

  73. G. Lavareda, C.N. de Carvalho, E. Fortunato, A.. Ramos, E. Alves, O. Conde, A. Amaral, J. Non-Cryst. Solids 352, p. 2311 (2006)

    Article  CAS  Google Scholar 

  74. M.S. Grover, P.A. Hersh, H.Q. Chiang, E.S. Kettenring, J.F. Wager, D.A. Keszler, J. Phys. D-Appl. Phys. 40, p. 1335 (2007)

    CAS  Google Scholar 

  75. H. Hosono, J. Non-Cryst. Solids 352, p. 851 (2006)

    Article  CAS  Google Scholar 

  76. K. Nomura, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 93, p. 192107 (2008)

    Google Scholar 

  77. M. Kim, J.H. Jeong, H.J. Lee, T.K. Ahn, H.S. Shin, J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 90, p. 212114 (2007)

    Google Scholar 

  78. M.G. McDowell, I.G. Hill, IEEE Trans. Electron Devices 56, p. 343 (2009)

    Article  CAS  Google Scholar 

  79. G.H. Kim, B.D. Ahn, H.S. Shin, W.H. Jeong, H.J. Kim, H.J. Kim, Appl. Phys. Lett. 94, p. 233501 (2009)

    Google Scholar 

  80. H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, Thin Solid Films 516, p. 1516 (2008)

    Google Scholar 

  81. J.K. Jeong, J.H. Jeong, H.W. Yang, J.S. Park, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 91, p. 113505 (2007)

    Google Scholar 

  82. D. Kang, H. Lim, C. Kim, I. Song, J. Park, Y. Park, J. Chung, Appl. Phys. Lett. 90, p. 192101 (2007)

    Google Scholar 

  83. J.S. Park, J.K. Jeong, H.J. Chung, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 92, p. 072104 (2008)

    Google Scholar 

  84. J. Lagowski, E.S. Sproles, Jr., H.C. Gatos, J. Appl. Phys. 48, p. 3566 (1977)

    Article  CAS  Google Scholar 

  85. J. Robertson, MRS Bull. 27, p. 217 (2002)

    Google Scholar 

  86. H.Q. Chiang, Development of Oxide Semiconductors: Materials, Devices, and Integration, Electrical And Computer Engineering, (Oregon State University, Oregon 2007)

    Google Scholar 

  87. C.S. Chuang, T.C. Fung, B.G. Mullins, K. Nomura, T. Kamiya, H.P.D. Shieh, H. Hosono, J. Kanicki, 2008 Sid International Symposium, Digest of Technical Papers, Vol Xxxix, Books I-III, (Soc Information Display, Playa Del Rey 2008)

    Google Scholar 

  88. J.S. Park, J.K. Jeong, Y.G. Mo, H.D. Kim, C.J. Kim, Appl. Phys. Lett. 93, p. 033513 (2008)

    Google Scholar 

  89. D. Hong, G. Yerubandi, H.Q. Chiang, M.C. Spiegelberg, J.F. Wager, Crit. Rev. Solid State Mater. Sci. 33, p. 101 (2008)

    Article  CAS  Google Scholar 

  90. H. Aguas, V. Silva, E. Fortunato, S. Lebib, P.R.I. Cabarrocas, I. Ferreira, L. Guimaraes, R. Martins, Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 42, p. 4935 (2003)

    Google Scholar 

  91. M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, H. Hosono, Appl. Phys. Lett. 92, p. 133512 (2008)

    Google Scholar 

  92. E. Fortunato, P. Barquinha, G. Goncalo, L. Pereira, R. Martins In: A. Facchetti and T.J. Marks, Editors, Transparent Electronics: From Synthesis to Applications, (Wiley, UK 2010)

    Google Scholar 

  93. A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, Appl. Phys. Lett. 94, p. 133502 (2009)

    Google Scholar 

  94. H.N. Lee, J. Kyung, M.C. Sung, D.Y. Kim, S.K. Kang, S.J. Kim, C.N. Kim, H.G. Kim, S.T. Kim, J. Soc. Inf. Disp. 16, p. 265 (2008)

    CAS  Google Scholar 

  95. A. Olziersky, P. Barquinha, A. Vila, L. Pereira, G. Goncalves, E. Fortunato, R. Martins, J.R. Morante, J. Appl. Phys. 108, p. 064505 (2010)

    Article  Google Scholar 

  96. K.S. Son, T.S. Kim, J.S. Jung, M.K. Ryu, K.B. Park, B.W. Yoo, J.W. Kim, Y.G. Lee, J.Y. Kwon, S.Y. Lee, J.M. Kim, 2008 Sid International Symposium, Digest of Technical Papers, Vol XXXIX, Books I-III, Soc Information Display, Playa Del Rey (2008)

    Google Scholar 

  97. J. Park, S. Kim, C. Kim, S. Kim, I. Song, H. Yin, K.K. Kim, S. Lee, K. Hong, J. Lee, J. Jung, E. Lee, K.W. Kwon, Y. Park, Appl. Phys. Lett. 93, p. 053505 (2008)

    Google Scholar 

  98. H. Omura, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, H. Hosono, J. Appl. Phys. 105, p. 8 (2009)

    Google Scholar 

  99. K. Remashan, D.K. Hwang, S.D. Park, J.W. Bae, G.Y. Yeom, S.J. Park, J.H. Jang, Electrochem. Solid State Lett. 11, p. H55 (2008)

    Article  CAS  Google Scholar 

  100. I.T. Cho, J.M. Lee, J.H. Lee, H.I. Kwon, Semicond. Sci. Technol. 24, p. 015013 (2009)

    Google Scholar 

  101. D. Hong, J.F. Wager, J. Vac. Sci. Technol. B 23, p. L25 (2005)

    Article  CAS  Google Scholar 

  102. M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, N. Sariciftci, Monatshefte für Chemie/Chemical Monthly 140, p. 735 (2009)

    Google Scholar 

  103. S. Sasa, M. Ozaki, K. Koike, M. Yano, M. Inoue, Appl. Phys. Lett. 89, p. 053502 (2006)

    Google Scholar 

  104. J.M. Shaw, J.D. Gelorme, N.C. LaBianca, W.E. Conley, S.J. Holmes, IBM J. Res. Dev. 41, p. 81 (1997)

    CAS  Google Scholar 

  105. A.L. Bogdanov, S.S. Peredkov, Microelectron. Eng. 53, p. 493 (2000)

    CAS  Google Scholar 

  106. A.K. Nallani, S.W. Park, J.B. Lee In: J.C. Chiao, V.K. Varadan and C. Cane, Editors, Smart Sensors, Actuators, and Mems, Pts 1 and 2, (Spie-Int Soc Optical Engineering, Bellingham (2003)

    Google Scholar 

  107. M.S. Weaver, L.A. Michalski, K. Rajan, M.A. Rothman, J.A. Silvernail, J.J. Brown, P.E. Burrows, G.L. Graff, M.E. Gross, P.M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, M. Zumhoff, Appl. Phys. Lett. 81, p. 2929 (2002)

    CAS  Google Scholar 

  108. J.K. Jeong, H.W. Yang, J.H. Jeong, Y.G. Mo, H.D. Kim, Appl. Phys. Lett. 93, p. 123508 (2008)

    Google Scholar 

  109. M.J. Powell, C. Vanberkel, I.D. French, D.H. Nicholls, Appl. Phys. Lett. 51, p. 1242 (1987)

    CAS  Google Scholar 

  110. S.G.J. Mathijssen, M. Colle, H. Gomes, E.C.P. Smits, B. de Boer, I. McCulloch, P.A. Bobbert, D.M. de Leeuw, Adv. Mater. 19, p. 2785 (2007)

    CAS  Google Scholar 

  111. N.D. Young, A. Gill, Semiconduct. Sci. Technol. 5, p. 72 (1990)

    CAS  Google Scholar 

  112. Y.K. Moon, S. Lee, W.S. Kim, B.W. Kang, C.O. Jeong, D.H. Lee, J.W. Park, Appl. Phys. Lett. 95, p. 013507 (2009)

    Google Scholar 

  113. M.E. Lopes, H.L. Gomes, M.C.R. Medeiros, P. Barquinha, L. Pereira, E. Fortunato, R. Martins, I. Ferreira, Appl. Phys. Lett. 95, p. 063502 (2009)

    Google Scholar 

  114. A. Suresh, J.F. Muth, Appl. Phys. Lett. 92, p. 033502 (2008)

    Google Scholar 

  115. J.M. Lee, I.T. Cho, J.H. Lee, H.I. Kwon, Appl. Phys. Lett. 93, p. 093504 (2008)

    Google Scholar 

  116. S.M. Jahinuzzaman, A. Sultana, K. Sakariya, P. Servati, A. Nathan, Appl. Phys. Lett. 87, p. 023502 (2005)

    Google Scholar 

  117. D.H. Zhang, Mater. Chem. Phys. 45, p. 248 (1996)

    CAS  Google Scholar 

  118. D.H. Levy, D. Freeman, S.F. Nelson, P.J. Cowdery-Corvan, L.M. Irving, Appl. Phys. Lett. 92, p. 192101 (2008)

    Google Scholar 

  119. J.K. Jeong, J.H. Jeong, J.H. Choi, J.S. Im, S.H. Kim, H.W. Yang, K.N. Kang, K.S. Kim, T.K. Ahn, H.J. Chung, M. Kim, B.S. Gu, J.S. Park, Y.G. Mo, H.D. Kim, H.K. Chung, Distinguished paper: 12.1-inch WXGA AMOLED display driven by indium-gallium-zinc oxide TFTs array, International Symposium of the Society-for-Information-Display (SID 2008), Soc Information Display, (Los Angeles, CA 2008)

    Google Scholar 

  120. M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, H. Hosono, IEEE Electron Device Lett. 28, p. 273 (2007)

    Google Scholar 

  121. H. Frenzel, F. Schein, A. Lajn, H.v. Wenckstern, M. Grundmann, Appl. Phys. Lett. 96, p. 113502 (2010)

    Google Scholar 

  122. P. Görrn, F. Ghaffari, T. Riedl, W. Kowalsky, Solid-State Electron. 53, p. 329 (2009)

    Google Scholar 

  123. T. Osada, K. Akimoto, T. Sato, M. Ikeda, M. Tsubuku, J. Sakata, J. Koyama, T. Serikawa, S. Yamazaki, SID Digest, p. 184 (2009)

    Google Scholar 

  124. http://www.gizmag.com/samsungs-transparent-lcd-display/18283/picture/132495/

  125. http://www.samsunghub.com/2010/11/08/samsung-develops-70-inch-lcd-panel-using-oxide-semiconductor-tech/

Download references

Acknowledgements

The authors thank the Microelectronic and Optoelectronic Materials Group in CENIMAT. Thanks are also due to the Multiflexioxides Project Consortium (NMP3-CT-2006–032231) and ORAMA Project Consortium (FP7-NMP-2009-LARGE-3). The authors also thank Portuguese Science Foundation (FCT-MCTES) for the funding through the projects PTDC/CTM/73943/2006, PTDC/EEA-ELC/64975/2006 and PTDC/CTM/099124/2008. Thanks are also due to the European Research Council for the ERC 2008 Advanced Grant (INVISIBLE contract number 228144) and IT R&D program of MKE (2006-S079–03, Smart window with transparent electronic devices) from ETRI Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Fortunato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barquinha, P., Martins, R., Fortunato, E. (2012). N-Type Oxide Semiconductor Thin-Film Transistors. In: Pearton, S. (eds) GaN and ZnO-based Materials and Devices. Springer Series in Materials Science, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23521-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23521-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23520-7

  • Online ISBN: 978-3-642-23521-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics