Skip to main content

Proteoid Roots and Exudation of Proteases by Plant Roots

  • Chapter
  • First Online:
Secretions and Exudates in Biological Systems

Part of the book series: Signaling and Communication in Plants ((SIGCOMM,volume 12))

Abstract

Among the numerous strategies for improving P or N uptake by plants, development of proteoid roots and exudation of proteases can be found. Proteoid roots, which develop as a response to P deficiency during exudative burst secrete carboxylates and acid phosphatase, which improves P uptake. Proteoid root morphology and anatomy, factors that influence development and their role in plant nutrition, are described. In addition, this chapter summarizes our knowledge of the recently discovered phenomenon of protease secretion by intact plant roots, including their biochemical characterization and their potential role in the nitrogen nutrition of plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczyk B, Godlewski M, Domanska A, Bilecka A (2004) Can plant roots exude proteolytic enzymes into the culture medium? Acta Physiol Plant 26:45

    Google Scholar 

  • Adamczyk B, Godlewski M, Zimny J, Zimny A (2008a) Wheat (Triticum aestivum) seedlings secrete proteases from roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biol 10:718–724

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk B, Kitunen V, Smolander A (2008b) Protein precipitation by tannins in soil organic horizon and vegetation in relation to tree species. Biol Fertil Soils 45:55–64

    Article  CAS  Google Scholar 

  • Adamczyk B, Godlewski M, Smolander A, Kitunen V (2009a) Degradation of proteins by enzymes exuded by Allium porrum roots – a potentially important strategy for acquiring organic nitrogen by plants. Plant Physiol Biochem 47:919–925

    Article  PubMed  CAS  Google Scholar 

  • Adamczyk B, Kitunen V, Smolander A (2009b) Polyphenol oxidase, tannase and proteolytic activity in relation to tannin concentration in the soil organic horizon under silver birch and Norway spruce. Soil Biol Biochem 41:2085–2093

    Article  CAS  Google Scholar 

  • Adamczyk B, Godlewski M, Zimny J, Zimny A (2010a) Growth and protease secretion from the roots of wheat (Triticum aestivum cv. Tacher) seedlings cultivated on different nitrogen sources. Indian J Plant Physiol 15:150–153

    CAS  Google Scholar 

  • Adamczyk B, Smolander A, Kitunen V, Godlewski M (2010b) Proteins as nitrogen source for plants – a short story about exudation of proteases by plant roots. Plant Signal Behav 5:1–3

    Article  Google Scholar 

  • Adams MA, Pate JS (1992) Availability of organic and inorganic forms of phosphorus to lupins (Lupinus spp.). Plant Soil 145:107–113

    Article  Google Scholar 

  • Arahou M, Diem HG (1997) Iron deficiency induces cluster (proteoid) root formation in Casuarina glauca. Plant Soil 196:71–79

    Article  CAS  Google Scholar 

  • Bending GD, Read DJ (1996) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Braum SM, Helmke PA (1995) White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 176:95–100

    Article  CAS  Google Scholar 

  • Davies J, Briarty LG, Rieley JO (1973) Observations on the swollen lateral roots of the Cyperaceae. New Phytol 72:167–174

    Article  Google Scholar 

  • Dell B, Kuo J, Thompson GJ (1980) Development of proteoid roots in Hakea obliqua R.Br. (Proteaceae) grown in water culture. Aust J Bot 28:27–37

    Article  Google Scholar 

  • Delrot S, Atanassova R, Gomes E, Coutos-Thevenot P (2001) Plasma membrane transporters: a machinery for uptake of organic solutes and stress resistance. Plant Sci 161:391–404

    Article  CAS  Google Scholar 

  • Dessougi HI, Dreele zu, Claasen N (2003) Growth and phosphorus uptake of maize cultivated alone, in mixed culture with other crops or after incorporation of their residues. J Plant Nutr Soil Sci 166:254–261

    Article  Google Scholar 

  • Diem HG, Duchoux E, Zaid H, Arahou M (2000) Cluster roots in Casuarinaceae: role and relationship to soil nutrient factors. Ann Bot 85:929–936

    Article  CAS  Google Scholar 

  • Dinkelaker B, Römheld V, Marschner H (1989) Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L). Plant Cell Environ 12:285–292

    Article  CAS  Google Scholar 

  • Dinkelaker B, Hengeler C, Bienfait HF (1995) Distribution and function of proteoid roots and other root clusters. Bot Acta 108:183–200

    Google Scholar 

  • Elfstrand S, Bath B, Martensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70–82

    Article  Google Scholar 

  • Floch C, Capowiez Y, Criquet S (2009) Enzyme activities in apple orchard agroecosystems: how are they affected by management strategy and soil properties. Soil Biol Biochem 41:61–68

    Article  CAS  Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson I, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2010) Knowledge gaps in soil carbon and nitrogen interactions – from molecular to global scale. Soil Biol Biochem. doi:10.1016/j.soilbio.2010.04.006

  • Gardner WK, Parbery DG, Barber DA (1982) The acquisition of phosphorus by Lupinus albus L. I. Some characteristics of the soil/root interface. Plant Soil 68:19–32

    Article  CAS  Google Scholar 

  • George TS, Gregory PJ, Wood M, Read D, Buresh RJ (2002) Phosphatase activity and organic acids in the rhizosphere of potential agroforestry species and maize. Soil Biol Biochem 34:1487–1494

    Article  CAS  Google Scholar 

  • Godlewski M, Adamczyk B (2007) The ability of plants to secrete proteases by roots. Plant Physiol Biochem 45:657–664.

    Article  PubMed  CAS  Google Scholar 

  • Hawkins H-J, Wolf G, Stock WD (2005) Cluster roots of Leucadendron laureolum (Proteaceae) and Lupinus albus (Fabaceae) take up glycine intact: an adaptive strategy to low mineral nitrogen in soils? Ann Bot 96:1275–1282.

    Article  PubMed  CAS  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Hirner A, Ladwig F, Stransky H, Okumoto S, Keinath M, Harms A, Frommer WB, Koch W (2006) Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18:1931–1946

    Article  PubMed  CAS  Google Scholar 

  • Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH (2000) Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues in soil. Soil Biol Biochem 32:1763–1772

    Article  CAS  Google Scholar 

  • Huang XP, Huang LM, Yue WZ (2003) The characteristics of nutrients and eutrophication in the Pearl River estuary, South China. Mar Pollut Bull 47:30–36

    Article  PubMed  CAS  Google Scholar 

  • Jones DL, Healey JR, Willet VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants – an important N uptake pathway? Soil Biol Biochem 37:413–423

    Article  CAS  Google Scholar 

  • Kaye JP, Hart SC (1997) Competition for nitrogen between plants and soil microorganisms. Trends Ecol Evol 12:139–143

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Juniper D, Cawthray GR, Veneklaas EJ, Martinez E (2002) The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122

    Article  CAS  Google Scholar 

  • Lambers H, Shane MW, Cramer MD, Pearse SJ, Veneklaas EJ (2006) Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits. Ann Bot 98:693–713

    Article  PubMed  Google Scholar 

  • Lamont B (1972) The morphology and anatomy of proteoid roots in genus Hakea. Aust J Bot 20:155–174

    Article  Google Scholar 

  • Lamont B (1973) Factors affecting the distribution of proteoid roots within the root system of two Hakea species. Aust J Bot 21:165–187

    Article  CAS  Google Scholar 

  • Lamont B (1982) Mechanisms for enhancing nutrient uptake in plants with particular reference to mediterranean South Africa and Western Australia. Bot Rev 48:597–689

    Article  CAS  Google Scholar 

  • Lamont B (2003) Structure, ecology and physiology of root clusters – a review. Plant Soil 248:1–19

    Article  CAS  Google Scholar 

  • Lee Y-H, Foster J, Chen J, Voll LM, Weber APM, Tegeder M (2007) AAP1 transports uncharged amino acids into roots of Arabidopsis thaliana. Plant J 50:305–319

    Article  PubMed  CAS  Google Scholar 

  • Li M, Osaki M, Rao IM, Tadano T (1997) Secretion of phytase from the roots of several plant species under phosphorus-deficient conditions. Plant Soil 195:161–169

    Article  Google Scholar 

  • Liang R, Li C (2003) Differences in cluster-root formation and carboxylate exudation in Lupinus albus L. under different nutrient deficiencies. Plant Soil 248:221–227

    Article  CAS  Google Scholar 

  • Lipson D, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Article  Google Scholar 

  • Liu J, Uhde-Stone C, Li A, Vance C, Allan D (2001) A phosphate transporter with enhanced expression in proteoid roots of white lupin (Lupinus albus L.). Plant Soil 237:257–266

    Article  CAS  Google Scholar 

  • Miller SS, Liu J, Allan DL, Menzhuber CJ, Fedorova M, Vance CP (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606.

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2000) Enzyme activities and microbial and biochemical processes in soil. In: Burns RG, Dick RP (eds) Enzymes in the environment: activity, ecology, and applications. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Naumann G, Massonneau A, Langlade N, Dinkelaker B, Hengeler C, Romheld V, Martinoia E (2000) Physiological aspects of cluster root function and development in phosphorus-deficient white lupins (Lupinus albus L.) Ann Bot 85:909–919

    Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182:31–48

    Article  PubMed  Google Scholar 

  • Nduwimana J, Guenet L, Dorval I, Blayau M, Gall JYL, Le Treut A (1995) Proteases. Ann Biol Clin 53:251–264

    CAS  Google Scholar 

  • Neumann G, Martinoia E (2002) Cluster roots – an underground adaptation for survival in extreme environments. Trends Plant Sci 7:162–167

    Article  PubMed  CAS  Google Scholar 

  • Neumann G, Römheld V (2001) The release of root exudates as affected by the plant physiological status. In: Pinto R, Varanini Z, Nannipieri Z (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 41–93

    Google Scholar 

  • Ortiz-Lopez A, Chang H-C, Bush DR (2000) Amino acid transporters in plants. Biochim Biophys Acta 1465:275–280

    Article  PubMed  CAS  Google Scholar 

  • Ozawa K, Osaki M, Matsui H, Honma M, Tadano T (1995) Purification and properties of acid phosphatase secreted from lupin roots under phosphorus-deficiency conditions. Soil Sci Plant Nutr 41:461–469

    Article  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Caroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 105:4524–4529

    Article  PubMed  CAS  Google Scholar 

  • Paungfoo-Lonhienne C, Schenk PM, Lonhienne TGA, Brackin R, Meier S, Rentsch D, Schmidt S (2009) Nitrogen affects cluster root formation and expression of putative peptide transporters. J Exp Bot 60:2665–2676

    Article  PubMed  CAS  Google Scholar 

  • Playsted CWS, Johnston ME, Ramage CM, Edwards DG, Cawthray GR, Lambers H (2006) Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol 170:491–500

    Article  PubMed  CAS  Google Scholar 

  • Purnell HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8:38–50

    Article  Google Scholar 

  • Rentsh D, Schmidt S, Tegeder M (2007) Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett 581:2281–2289

    Article  Google Scholar 

  • Roelofs RFR, Rengel Z, Cawthray GR, Dixon KW, Lambers H (2001) Exudation of carboxylates in Australian Proteaceae: chemical composition. Plant Cell Environ 24:891–903

    Article  CAS  Google Scholar 

  • Schmidt S, Stewart GR (1997) Waterlogging and fire impacts on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ 20:1231–1241

    Article  Google Scholar 

  • Schmidt S, Mason M, Sangtiean T, Stewart GR (2003) Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248:157–165

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Article  Google Scholar 

  • Skene KR, James WM (2000) A comparison of the effects of auxin on cluster root initiation and development in Gravillea robusta Cunn. Ex R. Br. (Proteaceae) and in the genus Lupinus (Leguminosae). Plant Soil 219:221–229

    Article  CAS  Google Scholar 

  • Tadano T, Ozawa K, Sakai H, Osaki M, Matsui H (1993) Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil 155(156):95–98

    Article  Google Scholar 

  • Tamminen P, Derome J (2005) Temporal trends in chemical parameters of upland forest soils in southern Finland. Silva Fenn 39:313–330

    Google Scholar 

  • Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phosphatases produced by plant roots and microorganisms. Biol Fertil Soils 5:308–312

    Article  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (2001) Comparative efficiency of acid phosphatase originated from plant and fungal sources. J Plant Nutr Soil Sci 164:279–282

    Article  CAS  Google Scholar 

  • Tarafdar JC, Claassen N (2005) Preferential utilization of organic and inorganic sources of phosphorus by wheat plant. Plant Soil 27:285–293

    Article  Google Scholar 

  • Wasaki J, Yamamura T, Shinano T, Osaki M (2003) Secreted acid phosphatase is expressed in cluster roots of lupin in response to phosphorus deficiency. Plant Soil 248:129–136

    Article  CAS  Google Scholar 

  • Wasaki J, Rothe A, Kania A, Neumann G, Römheld V, Shinano T, Osaki M, Kandeler E (2005) Root exudation, phosphorus acquisition and microbial diversity in the rhizosphere of White lupine as affected by phosphorus supply and atmospheric carbon dioxide concentration. J Environ Qual 34:2157–2166

    Article  PubMed  CAS  Google Scholar 

  • Wasaki J, Kojima S, Maruyama H, Haase S, Osaki M, Kandeler E (2008) Localization of acid phosphatase activities in the roots of white lupin plants grown under phosphorus-deficient conditions. Soil Sci Plant Nutr 54:95–102

    Article  CAS  Google Scholar 

  • Watt M, Evans JR (1999) Proteoid roots. Physiology roots. Physiology and development. Plant Physiol 121:317–323

    Article  PubMed  CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol 67:5849–5854

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Yamagishi M, Osaki M, Masuda K (2008) Sugar signalling mediates cluster root formation and phosphorus starvation-induced gene expression in white lupin. J Exp Bot 59:2749–2756

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartosz Adamczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Adamczyk, B., Smolander, A., Kitunen, V., Godlewski, M. (2012). Proteoid Roots and Exudation of Proteases by Plant Roots. In: Vivanco, J., Baluška, F. (eds) Secretions and Exudates in Biological Systems. Signaling and Communication in Plants, vol 12. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23047-9_4

Download citation

Publish with us

Policies and ethics