Skip to main content

Tropic Orientation Responses of Pathogenic Fungi

  • Chapter
  • First Online:
Morphogenesis and Pathogenicity in Fungi

Part of the book series: Topics in Current Genetics ((TCG,volume 22))

Abstract

Cellular orientation allows growth, differentiation and behaviour to respond to vectorial cues generated in the environment and in relation to cells of the same organisms or different organisms that exist in proximity to one another. In the case of fungal pathogens, the orientation of hyphae may allow the fungus to detect a host and to make strategic penetrations at points of weakness on the host surface. Within a host, tropic orientation may facilitate colonisation, ramification and dispersal within the host tissues. To achieve this, cells have to be able to coordinate their cell cycles, growth and expansion of their margins with directional growth responses. In this chapter, we review the tropic orientation responses of fungi and, with an emphasis on fungal pathogenesis, discuss and speculate on the underlying molecular mechanisms that regulate cellular tropisms. Examples are taken across the fungal kingdom, including from work on saprophytes, plant and animal pathogens, to construct a working model that speculates how a wide range of tropisms may be controlled by a more-or-less common tropic mechanism that regulates the orientation of the hyphal tip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen EA, Hoch HC, Stavely JR, Steadman JR (1991) Uniformity among races of Uromyces appendiculatus in response to topographical signalling for appressorium formation. Phytopathology 81:883–887

    Google Scholar 

  • Alsteens D, Garcia MC, Lipke PN, Dufresne YF (2010) Force-induced formation and propagation of adhesion nanodomains in living fungal cells. Proc Natl Acad Sci USA 107:20744–20749

    PubMed  CAS  Google Scholar 

  • Aoki A, Ito-Kuwa S, Nakamura K, Vidotta V, Takeo K (1998) Oxygen as a possible tropic factor in hyphal growth of Candida albicans. Mycoscience 39:231–238

    CAS  Google Scholar 

  • Apoga D, Barnard J, Craighead HG, Hoch HC (2004) Quantification of substratum contact required for initiation of Colletotrichum graminicola appressoria. Fungal Genet Biol 41:1–12

    PubMed  Google Scholar 

  • Bassilana M, Blyth J, Arkowitz RA (2003) Cdc24, the GDP-GTP exchange factor for Cdc42, is required for invasive hyphal growth of Candida albicans. Eukaryot Cell 2:9–18

    PubMed  CAS  Google Scholar 

  • Bastidas RJ, Heitman J, Cardenas ME (2009) The protein kinase Tor1 regulates adhesin gene expression in Candida albicans. PLoS Pathog 5:e1000294

    PubMed  Google Scholar 

  • Bates S, MacCallum DM, Bertram G, Munro CA, Hughes HB, Buurman ET, Brown AJP, Odds FC, Gow NAR (2005) Candida albicans Pmr1p, a secretory pathway P-type Ca2+/Mn2+-ATPase, is required for glycosylation and virulence. J Biol Chem 280:23408–23415

    PubMed  CAS  Google Scholar 

  • Bourett TM, Howard RJ (1992) Actin in penetration pegs of the fungal rice blast pathogen, Magnaporthe grisea. Protoplasma 168:20–26

    CAS  Google Scholar 

  • Bowen AD, Davidson FA, Keatch R, Gadd GM (2007) Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure. Fungal Genet Biol 44:484–491

    PubMed  Google Scholar 

  • Bowling DFJ, Edwards MC, Gow NA, Bowling DFJ, Edwards MC, Gow NAR (1986) Electrical currents at the leaf surface of Commelina communis and their relationships to stomatal activity. J Exp Bot 179:876–882

    Google Scholar 

  • Boyce KJ, Hynes MJ, Adrianopoulos A (2001) The CDC42 homolog of the dimorphic fungus Penicillium marneffei is required for correct cell polarization during growth but not development. J Bacteriol 183:3447–3457

    PubMed  CAS  Google Scholar 

  • Brand A, Gow NAR (2009) Mechanisms of hypha orientation of fungi. Curr Opin Microbiol 12:1–8

    Google Scholar 

  • Brand A, Shanks S, Duncan VMS, Yang M, Mackenzie K, Gow NAR (2007) Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr Biol 17:347–352

    PubMed  CAS  Google Scholar 

  • Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P, Henry-Stanley M, Wells C, Ross K, Gow NAR, Gale CA (2008) An internal polarity landmark is important for externally induced hyphal behaviours in Candida albicans. Eukaryot Cell 7:712–720

    PubMed  CAS  Google Scholar 

  • Brand A, Lee K, Veses B, Gow NAR (2009) Calcium homeostasis is required for contact-dependent helical and sinusoidal tip growth in Candida albicans hyphae. Mol Microbiol 71:1155–1164

    PubMed  CAS  Google Scholar 

  • Casamayor A, Snyder M (2002) Bud-site selection and cell polarity in budding yeast. Curr Opin Microbiol 5:179–186

    PubMed  CAS  Google Scholar 

  • Christensen MJ, Bennett RJ, Ansari HA, Koga H, Johnson RD, Bryan GT, Simposon WR, Koolarard JP, Nickless EM, Voisey CR (2008) Epichloe endophytes grow by intercalary hyphal extension in elongating grass leaves. Fungal Genet Biol 45:84–93

    PubMed  Google Scholar 

  • Clergeot PH, Gourgues M, Cots J, Laurans F, Latorse MP, Pepin R, Tharreau D, Notteghem JL, Lebrun MH (2001) PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA 98:6963–6968

    PubMed  CAS  Google Scholar 

  • Collins TJ, Read ND (1997) Appressorium induction by topographical signals from six cereal rusts. Physiol Mol Plant Pathol 51:169–179

    Google Scholar 

  • Crombie T, Gow NAR, Gooday GW (1990) Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J Gen Microbiol 136:311–317

    PubMed  CAS  Google Scholar 

  • Dalle F, Wächtler B, L’Ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248–271

    PubMed  CAS  Google Scholar 

  • Daniels KJ, Srikantha T, Lockhart SR, Pujol C, Soll DR (2006) Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J 25:2240–2252

    PubMed  CAS  Google Scholar 

  • Davies JM, Stacey AJ, Gilligan CA (1999) Candida albicans hyphal invasion: thigmotropism or chemotropism? FEMS Microbiol Lett 171:245–249

    PubMed  CAS  Google Scholar 

  • Deising H, Nicholson RL, Haug M, Howard RJ, Mendgen K (1992) Adhesion pad formation and the involvement of cutinase and esterases in the attachment of uredospores to the host cuticle. Plant Cell 4:1101–1111

    PubMed  CAS  Google Scholar 

  • Ding JP, Pickard BG (1993) Mechanosensory calcium-selective cation channels in epidermal cells. Plant J 3:83–110

    CAS  Google Scholar 

  • Dupres V, Alsteens D, Wilk S, Hansen B, Heinisch JJ, Dufrene YF (2009) The yeast Wsc1 cell surface sensor behaves like a nanospring in vivo. Nat Chem Biol 5:857–862

    PubMed  CAS  Google Scholar 

  • Feng J, Wang F, Liu G, Greenshields D, Shen W, Kaminskyj S, Hughes GR, Peng Y, Selvaraj G, Zou J, Wei Y (2009) Analysis of a Blumeria graminis-secreted lipase reveals the importance of host epicuticular wax components for fungal adhesion and development. Mol Plant Microbe Interact 22:1601–1610

    PubMed  CAS  Google Scholar 

  • Fischer R, Zekert N, Takeshita N (2008) Polarized growth in fungi – interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 68:813–826

    PubMed  CAS  Google Scholar 

  • Gent AN, Kaang S (1986) Pull-off forces for adhesive tapes. J Appl Polym Sci 32:4689–4700

    CAS  Google Scholar 

  • Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence. Mol Microbiol 79:240–263

    PubMed  CAS  Google Scholar 

  • Gooday GW (1975) Chemotaxis and chemotropism in fungi and algae. In: Carlile MJ (ed) Primitive sensory and communication systems. Academic, London, pp 155–204

    Google Scholar 

  • Gooday GW, Adams DJ (1993) Sex hormones and fungi. Adv Microb Physiol 34:69–145

    PubMed  CAS  Google Scholar 

  • Goriely A, Tabor M (2006) Estimates of biomechanical forces in Magnaporthe grisea. Mycol Res 110:755–759

    PubMed  Google Scholar 

  • Gourgues M, Brunet-Simon A, Lebrun MH, Levis C (2004) The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves. Mol Microbiol 51:619–629

    PubMed  CAS  Google Scholar 

  • Gow NAR (1987) Polarity and branching induced by electrical fields. In: Poole RK, Trinci APJ (eds) Spatial organisation in eukaryotic microbes. Special publications of the society for general microbiology, vol 23. IRL Press, Oxford, pp 25–41

    Google Scholar 

  • Gow NAR (1989) The circulating ionic currents of microorganisms. Adv Microb Physiol 30:89–123

    PubMed  CAS  Google Scholar 

  • Gow NAR (1993) Non-chemical signals used for host location and invasion by fungal pathogens. Trends Microbiol 1:45–50

    PubMed  CAS  Google Scholar 

  • Gow NAR (1994) Growth and guidance of the hyphal apex. Microbiology 140:3193–3205, Fleming Lecture

    PubMed  CAS  Google Scholar 

  • Gow NAR (2004) New angles in mycology: studies in directional growth and directional motility. Mycol Res 108:5–13

    PubMed  Google Scholar 

  • Gow NAR, Kropf DL, Harold FM (1984) Growing hyphae of Achlya bisexualis generate a longitudinal pH gradient in the surrounding medium. J Gen Microbiol 130:2967–2974

    PubMed  CAS  Google Scholar 

  • Gow NAR, Perera THS, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D (1994) Investigation of touch-sensitive responses by hyphae of the human pathogenic fungus Candida albicans. Scanning Microsc 8:705–710

    PubMed  CAS  Google Scholar 

  • Harris SD, Momany M (2004) Polarity in filamentous fungi: moving beyond the yeast paradigm. Fungal Genet Biol 41:391–400

    PubMed  CAS  Google Scholar 

  • Hausauer DL, Gerami-Nejad M, Kistler-Anderson C, Gale CA (2005) Hyphal guidance and invasive growth in Candida albicans require the Ras-Like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot Cell 4:1273–1286

    PubMed  CAS  Google Scholar 

  • Hedge Y, Kollatukudy PE (1997) Cuticular waxes relieve self-inhibition of germination and appressorium formation by conidia of Magnaporthe grisea. Physiol Mol Plant Pathol 51:75–84

    Google Scholar 

  • Herrero AB, Lopez MC, Fernandez-Lago L, Dominguez A (1999) Candida albicans and Yarrowia lipolytica as alternative models for analysing budding patterns and germ tube formation in dimorphic fungi. Microbiology 145:2727–2737

    PubMed  CAS  Google Scholar 

  • Hoch HC, Bojko RJ, Comeau GL, Allen EA (1993) Integrating microfabrication and biology. Circuits and Devices 9:16–22

    Google Scholar 

  • Hoch H, Staples R, Whitehead B, Comeau J, Wolf E (1987) Signalling for growth orientation and cell differentiation by surface topography in Uromyces. Science 235:1659–1662

    PubMed  CAS  Google Scholar 

  • Howard RJ, Ferrari MA, Roach DH, Money NP (1991) Penetration of hard substrates by a fungus employing enormous turgor pressures. Proc Acad Sci USA 88:11281–11284

    CAS  Google Scholar 

  • Hoyer LL, Hecht JE (2001) The ALS5 gene of Candida albicans and analysis of the Als5p N-terminal domain. Yeast 18:49–60

    PubMed  CAS  Google Scholar 

  • Hoyer LL, Green CB, Oh SH, Zhao X (2008) Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol 46:1–15

    PubMed  CAS  Google Scholar 

  • Hutton RD, Kerbs S, Yee K (1978) Scanning electron microscopy of experimental Trichophyton mentagrophytes infections in guinea pig skin. Infect Immun 21:247–253

    PubMed  CAS  Google Scholar 

  • Jaffe MJ, Leopold AC, Staples RC (2002) Thigmo responses in plants and fungi. Am J Bot 89:375–382

    PubMed  Google Scholar 

  • Jansson H-B, Johansson T, Nordbring-Herts B, Tunlid A, Odham G (1988) Chemotropic growth of germ tubes of Cochliobolus sativus to barley roots or root exudates. Trans Br Mycol Soc 90:647–650

    Google Scholar 

  • Kaminskyj SG, Heath IB (1995) Integrin and spectrin homologues, and cytoplasm-wall adhesion in tip growth. J Cell Sci 108:849–856

    PubMed  CAS  Google Scholar 

  • Karababa M, Valentino E, Pardini G, Coste AT, Bille J, Sanglard D (2006) CRZ1, a target of the calcineurin pathway in Candida albicans. Mol Microbiol 59:1429–1451

    PubMed  CAS  Google Scholar 

  • Klotz SA, Rutten MJ, Smith RL, Babcock SR, Cunningham MD (1993) Adherence of Candida albicans to immobilized extracellular matrix proteins is mediated by calcium-dependent surface glycoproteins. Microb Pathog 14:133–147

    PubMed  CAS  Google Scholar 

  • Kumamoto CA (2005) A contact-activated kinase signals Candida albicans invasive growth and biofilm development. Proc Natl Acad Sci USA 102:5576–5581

    PubMed  CAS  Google Scholar 

  • Kumamoto CA (2008) Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673

    PubMed  CAS  Google Scholar 

  • Kumamoto CA, Vinces MD (2005) Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59:113–133

    PubMed  CAS  Google Scholar 

  • Kwon YH, Hoch HC (1990) Temporal and spatial dynamics of appressorium formation in Uromyces appendiculatus. Exp Mycol 15:116–131

    Google Scholar 

  • Lambou K, Malagnac F, Barbisan C, Tharreau D, Lebrun MH, Silar P (2008) The crucial role of the Pls1 tetraspanin during ascospore germination in Podospora anserina provides an example of the convergent evolution of morphogenetic processes in fungal plant pathogens and saprobes. Eukaryot Cell 7:1809–1818

    PubMed  CAS  Google Scholar 

  • Lang I, Barton DA, Overall RL (2004) Membrane – wall attachments in plasmolysed plant cells. Protoplasma 224:231–243

    PubMed  CAS  Google Scholar 

  • Lever M, Robertson B, Buchan ADB, Gooday GW, Gow NAR (1994) pH and Ca2+ dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol Res 98:301–306

    Google Scholar 

  • Lipschutz J, Mostov K (2007) Exocytosis: the many masters of the exocyst. Curr Biol 1:212–214

    Google Scholar 

  • Liu Y, Filler SG (2011) Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell 10:168–173

    PubMed  Google Scholar 

  • Liu H, Suresh A, Willard FS, Siderovski DP, Lu S, Naqvi NI (2007) Rgs1 regulates multiple Gα subunits in Magnaporthe pathogenesis, asexual growth and thigmotropism. EMBO J 26:690–700

    PubMed  CAS  Google Scholar 

  • Machesky LM, Gould KL (1999) The Arp2/3 complex: a multifunctional actin organizer. Curr Opin Cell Biol 11:117–121

    PubMed  CAS  Google Scholar 

  • McGillivray AM, Gow NAR (1986) Applied electrical fields polarize the growth of mycelial fungi. J Gen Microbiol 132:2515–2525

    Google Scholar 

  • McGillivray AM, Gow NAR (1987) The transhyphal electrical current of Neurospora crassa is carried principally by protons. J Gen Microbiol 133:2875–2881

    Google Scholar 

  • Miller AL, Gow NAR (1989) Correlation between profile of ion-current circulation and root development. Physiol Plant 75:102–108

    Google Scholar 

  • Money NP, Harold FM (1992) Extension growth of the water mold Achlya: interplay of turgor and wall strength. Proc Natl Acad Sci USA 89:4245–4249

    PubMed  CAS  Google Scholar 

  • Morris BM, Reid B, Gow NAR (1992) Electrotaxis of zoospores of Phytophthora palmivora at physiologically relevant field strengths. Plant Cell Environ 15:645–653

    Google Scholar 

  • Perera THS, Gregory DW, Marshall D, Gow NAR (1997) Contact sensing in hyphae of dermatophytic and saprophytic fungi. J Med Vet Mycol 35:289–294

    PubMed  CAS  Google Scholar 

  • Pickard BG (1992) Wall to membrane linkers, stretch activated channels, and the detection of tension, voltage, temperature, auxin, and pH. ASGSB Bull 6:31

    PubMed  CAS  Google Scholar 

  • Rajnicek AM, McCaig CD, Gow NAR (1994) Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli and Bacillus subtilus cells: implications for mechanisms of galvanotropism and bacterial growth. J Bacteriol 176:702–713

    PubMed  CAS  Google Scholar 

  • Ravishankar JP, Davis CM, Davis DJ, MacDonald E, Makselan SD, Millward L, Money NP (2001) Mechanics of solid tissue invasion by the mammalian pathogen Pythium insidiosum. Fungal Genet Biol 34:167–175

    PubMed  CAS  Google Scholar 

  • Read ND, Kellock LK, Knight H, Trewavas AJ (1992) Contact sensing during infection by fungal pathogens. In: Callow JA, Green JR (eds) Perspectives in plant cell recognition, vol 48. Cambridge University Press, Cambridge, pp 137–172

    Google Scholar 

  • Roderick HW (1993) The infection of white clover (Trifolium repens) by conidia of Cymadothea trifolii. Mycol Res 97:227–232

    Google Scholar 

  • Schild L, Heyken A, de Groot PWJ, Hiller E, Mock M, de Koster C, Horn U, Rupp S, Hube B (2011) Proteolytic cleavage of covalently linked cell wall proteins by Candida albicans Sap9 and Sap10. Eukaryot Cell 10:98–109

    PubMed  CAS  Google Scholar 

  • Shaw BD, Carroll GC, Hoch HC (2006) Generality of the prerequisite of conidium attachment to a hydrophobic substratum as a signal for germination among Phyllosticta species. Mycologia 98:186–194

    PubMed  CAS  Google Scholar 

  • Sheppard DC, Yeaman MR, Welch WH, Phan QT, Fu Y, Ibrahim AS, Filler SG, Zhang M, Waring AJ, Edwards JE Jr (2004) Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279:30480–30489

    PubMed  CAS  Google Scholar 

  • Smith PJS, Collis LP, Messerli MA (2010) Windows to cell function and dysfunction: signatures written in the boundary layers. Bioessays 32:514–523

    PubMed  CAS  Google Scholar 

  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538

    PubMed  CAS  Google Scholar 

  • Steinberg G (2007) Hyphal growth: a tale of motors, lipids, and the Spitzenkörper. Eukaryot Cell 6:351–360

    PubMed  CAS  Google Scholar 

  • Sudbery P, Court H (2007) Polarised growth in fungi. In: Howard RJ, Gow NAR (eds) The Mycota VIII, 2nd edn. Springer, Berlin, pp 137–166

    Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    PubMed  CAS  Google Scholar 

  • van West P, Morris BM, Reid B, Appiah AA, Osborne MC, Campbell TA, Shepherd SJ, Gow NAR (2002) Plant pathogens use electric fields to target plant roots. Mol Plant Microbe Interact 15:790–798

    PubMed  Google Scholar 

  • Veneault-Fourrey C, Lambou K, Lebrun MH (2006) Fungal Pls1 tetraspanins as key factors of penetration into host plants: a role in re-establishing polarized growth in the appressorium? FEMS Microbiol Lett 256:179–184

    PubMed  CAS  Google Scholar 

  • Verna J, Lodder A, Lee K, Vagts A, Ballester R (1997) A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 94:13804–13809

    PubMed  CAS  Google Scholar 

  • Virag A, Harris SD (2006) The Spitzenkörper: a molecular perspective. Mycol Res 110:4–13

    PubMed  CAS  Google Scholar 

  • Volgger M, Lang I, Ove-ìka M, Lichtscheidl I (2010) Plasmolysis and cell wall deposition in wheat root hairs under osmotic stress. Protoplasma 243:51–62

    PubMed  Google Scholar 

  • Warwar V, Dickman M (1996) Effects of calcium and calmodulin on spore germination and appressorium development in Colletotrichum trifolii. Appl Microbiol Environ 62:74–79

    CAS  Google Scholar 

  • Watts H, Very A-A, Perera THS, Davies J, Gow NAR (1998) Thigmotropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 144:689–695

    PubMed  CAS  Google Scholar 

  • Wolkow PM, Sisler HD, Vigil EL (1983) Effect of inhibitors of melanin biosynthesis on structure and function of appressoria of Colletotrichum lindemuthianum. Physiol Plant Pathol 23:55–71

    CAS  Google Scholar 

  • Wösten HA, Schuren FH, Wessels JG (1994) Interfacial assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13:5848–5854

    PubMed  Google Scholar 

  • Yan S, Rodrigues RG, Cahn-Hidalgo D, Walsh TJ, Roberts DD (1998) Hemoglobin induces binding of several extracellular matrix proteins to Candida albicans. J Biol Chem 273:5638–5644

    PubMed  CAS  Google Scholar 

  • Yang M, Brand A, Srikantha T, Daniels K, Soll DR, Gow NAR (2011) Fig1 facilitates calcium influx and localises to membranes destined to undergo fusion during mating in Candida albicans. Eukaryot Cell 10:435–444

    PubMed  CAS  Google Scholar 

  • Ye X, Szaniszlo PJ (2000) Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis. J Bacteriol 182:4941–4950

    PubMed  CAS  Google Scholar 

  • Youatt J, Gow NAR, Gooday GW (1988) Bioelectric and biosynthetic aspects of cell polarity in Allomyces macrogynus. Protoplasma 146:118–126

    Google Scholar 

  • Zheng W, Zhao Z, Chen J, Liu W, Ke H, Zhou J, Lu G, Darvill AG, Albersheim P, Wu S, Wang Z (2006) A Cdc42 ortholog is required for penetration and virulence of Magnaporthe grisea. Fungal Genet Biol 46:450–460

    Google Scholar 

  • Zhou XL, Stumpf MA, Hoch HC, Kung C (1991) A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science 253:1415–1417

    PubMed  CAS  Google Scholar 

  • Zucchi PC, Davis TR, Kumamoto CA (2010) A Candida albicans cell wall-linked protein promotes invasive filamentation into semi-solid medium. Mol Microbiol 76:733–748

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our research in this area has been funded by the MRC, BBSRC, Wellcome trust and Royal Society. AB is the recipient of an MRC New Investigator Award and a Royal Society University Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil A. R. Gow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brand, A., Gow, N.A.R. (2012). Tropic Orientation Responses of Pathogenic Fungi. In: Pérez-Martín, J., Di Pietro, A. (eds) Morphogenesis and Pathogenicity in Fungi. Topics in Current Genetics, vol 22. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22916-9_2

Download citation

Publish with us

Policies and ethics