Skip to main content

Fettgewebe

  • Chapter
  • First Online:
Adipositas
  • 14k Accesses

Zusammenfassung

Weißes Fettgewebe ist der größte Energiespeicher des Körpers. Die Entwicklung dieses spezialisierten Bindegewebes in der Evolution der Wirbeltiere ermöglichte die Unabhängigkeit von ständiger Nahrungszufuhr. Weißes Fettgewebe dient als Baufett, zur Polsterung und Isolierung, und als Energiespeicher. Es reagiert außerordentlich plastisch auf das Energieangebot des Körpers und steuert neben dem Energiestoffwechsel auch die Immun- und Reproduktionsfunktion der Säugetiere. Trotz einheitlicher Morphologie nehmen Adipozyten je nach Lokalisation im Körper verschiedene Funktionen wahr. Diese regionalen Unterschiede werden in diesem Kapitel detailliert beschrieben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Abel ED, Peroni O, Kim JK et al. (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409:729–733

    Article  PubMed  CAS  Google Scholar 

  • Ali AH, Koutsari C, Mundi M et al. (2011) Free fatty acid storage in human visceral and subcutaneous adipose tissue: role of adipozyte proteins. Diabetes 60:2300–2307

    Article  PubMed  CAS  Google Scholar 

  • Arner P, Bernard S, Salehpour M et al. (2011) Dynamics of human adipose lipid turnover in health and metabolic disease. Nature 478:110–113

    Article  PubMed  CAS  Google Scholar 

  • Astrup A, Bulow J, Christensen NJ, Madsen J (1984) Ephedrine-induced thermogenesis in man: no role for interscapular brown adipose tissue. Clin Sci (Lond) 66:179–186

    CAS  Google Scholar 

  • Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C, Eychmuller A, Gordts PL, Rinninger F, Bruegelmann K, Freund B, Nielsen P, Merkel M, Heeren J (2011) Brown adipose tissue activity controls triglyzeride clearance. Nat Med 17:200–205

    Article  PubMed  CAS  Google Scholar 

  • Belanger C, Hould FS, Lebel S et al. (2006) Omental and subcutaneous adipose tissue steroid levels in obese men. Steroids 71:674–682

    Article  PubMed  CAS  Google Scholar 

  • Birkenfeld AL, Budziarek P, Boschmann M et al. (2008) Atrial natriuretic peptide induces postprandial lipid oxidation in humans. Diabetes 57:3199–3204

    Article  PubMed  CAS  Google Scholar 

  • Blüher M, Michael MD, Peroni OD et al. (2002) Adipose tissue selective insulin receptor knockout protects against obesity and obesity-related glucose intolerance. Dev Cell 3:25–38

    Article  PubMed  Google Scholar 

  • Blüher M, Brennan AM, Kelesidis T et al. (2007) Total and high-molecular weight adiponectin in relation to metabolic variables at baseline and in response to an exercise treatment program: comparative evaluation of three assays. Diabetes Care 30:280–285

    Article  PubMed  CAS  Google Scholar 

  • Bobbert T, Rochlitz H, Wegewitz U et al. (2005) Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes 54:2712–2719

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Duan X, Homko C et al. (2008) Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 57:2438–4244

    Article  PubMed  CAS  Google Scholar 

  • Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S (2012) Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipozytes. J Clin Invest

    Google Scholar 

  • Boschmann M, Engeli S, Adams F et al. (2005) Adipose tissue metabolism and CD11b expression on monocytes in obese hypertensives. Hypertension 46:130–136

    PubMed  CAS  Google Scholar 

  • Boschmann M, Engeli S, Adams F et al. (2006) Influences of AT1 receptor blockade on tissue metabolism in obese men. Am J Physiol Regul Integr Comp Physiol 290:R219–R223

    Article  PubMed  CAS  Google Scholar 

  • Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM (2012) A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  CAS  Google Scholar 

  • Bujalska IJ, Quinkler M, Tomlinson JW et al. (2006) Expression profiling of 11beta-hydroxysteroid dehydrogenase type-1 and glucocorticoid-target genes in subcutaneous and omental human preadipozytes. J Mol Endocrinol 37:327–340

    Article  PubMed  CAS  Google Scholar 

  • Cancello R, Henegar C, Viguerie N et al. (2005) Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes 54:2277–2286

    Article  PubMed  CAS  Google Scholar 

  • Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359

    Article  PubMed  CAS  Google Scholar 

  • Chance B, Williams GR (1955) A simple and rapid assay of oxidative phosphorylation. Nature 175(4469):1120–1121

    Article  PubMed  CAS  Google Scholar 

  • Charrière G, Cousin B, Arnaud E et al. (2003) Preadipozyte conversion to macrophage. Evidence of plasticity J Biol Chem 278:9850–9855

    Article  CAS  Google Scholar 

  • Christensen CR, Clark PB, Morton KA (2006) Reversal of hypermetabolic brown adipose tissue in F-18 FDG PET imaging. Clin Nucl Med 31:193–196

    Article  PubMed  Google Scholar 

  • Cianflone K, Xia Z, Chen LY (2003) Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta 1609:127–143

    Article  PubMed  CAS  Google Scholar 

  • Cinti S (2005) The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73:9–15

    Article  PubMed  CAS  Google Scholar 

  • Cinti S (1999) The adipose organ. Editrice, Kurtis

    Google Scholar 

  • Cinti S, Mitchell G, Barbatelli G et al. (2005) Adipozyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46:2347–2355

    Article  PubMed  CAS  Google Scholar 

  • Crandall DL, Hausman GJ, Kral JG (1997) A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation 4:211–232

    Article  PubMed  CAS  Google Scholar 

  • Cunningham S, Leslie P, Hopwood D, Illingworth P, Jung RT, Nicholls DG, Peden N, Rafael J, Rial E. 1985. The characterization and energetic potential of brown adipose tissue in man. Clin Sci (Lond) 69:343–348

    Google Scholar 

  • Curat CA, Miranville A, Sengenès C et al. (2004) From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipozytes. Diabetes 53:1285–1292

    Article  PubMed  CAS  Google Scholar 

  • Curat CA, Wegner V, Sengenès C et al. (2006) Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 49:744–747

    Article  PubMed  CAS  Google Scholar 

  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517

    Article  PubMed  CAS  Google Scholar 

  • Daval M, Foufelle F, Ferre P (2006) Functions of AMP-activated protein kinase in adipose tissue. J Physiol 574:55–62

    Article  PubMed  CAS  Google Scholar 

  • Drubach LA, Palmer EL III, Connolly LP, Baker A, Zurakowski D, Cypess AM (2011) Pediatric brown adipose tissue: detection, epidemiology, and differences from adults. J Pediatr 159:939–944

    Article  PubMed  CAS  Google Scholar 

  • Dubois SG, Heilbronn LK, Smith SR (2006) Decreased expression of adipogenic genes in obese subjects with type 2 diabetes. Obesity 14:1543–1552

    Article  PubMed  CAS  Google Scholar 

  • Ellingsgaard H, Hauselmann I, Schuler B et al. (2011) Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat Med 17:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Enerback S (2010) Human brown adipose tissue. Cell Metab 11:248–252

    Article  PubMed  CAS  Google Scholar 

  • Engeli S, Feldpausch M, Gorzelniak K et al. (2003) Association between adiponectin and mediators of inflammation in obese women. Diabetes 52:942–947

    Article  PubMed  CAS  Google Scholar 

  • Engeli S, Schling P, Gorzelniak K et al. (2003) The adipose-tissue renin-angiotensin-aldosterone system: role in the metabolic syndrome? Int J Biochem Cell Biol 35:807–825

    Article  PubMed  CAS  Google Scholar 

  • Engeli S, Böhnke J, Gorzelniak K et al. (2005) Weight loss and the renin-angiotensin-aldosterone system. Hypertension 45:356–362

    Article  PubMed  CAS  Google Scholar 

  • Fain JN, Madan AK, Hiler ML et al. (2004) Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipozytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology 145:2273–2282

    Article  PubMed  CAS  Google Scholar 

  • Fain JN, Madan AK (2005) Insulin enhances vascular endothelial growth factor, interleukin-8, and plasminogen activator inhibitor 1 but not interleukin-6 release by human adipozytes. Metabolism 54:220–226

    Article  PubMed  CAS  Google Scholar 

  • Farmer SR (2006) Transcriptional control of adipozyte formation. Cell Metab 4:263–273

    Article  PubMed  CAS  Google Scholar 

  • Fischer-Posovszky P, Wang QA, Asterholm IW et al. (2011) Targeted deletion of adipozytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology 152:3074–3081

    Article  PubMed  CAS  Google Scholar 

  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  PubMed  CAS  Google Scholar 

  • Fontana L, Eagon JC, Trujillo ME et al. (2007) Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 56:1010–1013

    Article  PubMed  CAS  Google Scholar 

  • Foster DO, Frydman ML (1979) Tissue distribution of cold-induced thermogenesis in conscious warm- or cold-acclimated rats reevaluated from changes in tissue blood flow: the dominant role of brown adipose tissue in the replacement of shivering by nonshivering thermogenesis. Can J Physiol Pharmacol 57:257–270

    Article  PubMed  CAS  Google Scholar 

  • Fried SK, Russell CD, Grauso NL, Brolin RE (1993) Lipoprotein lipase regulation by insulin and glucocorticoid in subcutaneous and omental adipose tissues of obese women and men. J Clin Invest 92:2191–2198

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi, M, Tuncman, G, Gorgun et al. (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447:959–965

    Article  PubMed  CAS  Google Scholar 

  • Garg A (2000) Lipodystrophies. Am J Med 108:143–152

    Article  PubMed  CAS  Google Scholar 

  • Gibson WT, Farooqi IS, Moreau M et al. (2004) Congenital leptin deficiency due to homozygosity for the Delta133G mutation: report of another case and evaluation of response to four years of leptin therapy. J Clin Endocrinol Metab 89:4821–4826

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA et al. (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  PubMed  CAS  Google Scholar 

  • Hansen JC, Gilman AP, Odland JO (2010) Is thermogenesis a significant causal factor in preventing the “globesity” epidemic? Med Hypotheses 75:250–256

    Article  PubMed  Google Scholar 

  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK (2002) Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging 29:1393–1398

    Article  PubMed  Google Scholar 

  • Harmelen van V, Röhrig K, Hauner H (2004) Comparison of proliferation and differentiation capacity of human adipozyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism 53:632–637

    Article  PubMed  CAS  Google Scholar 

  • Hattori Y, Akimoto K, Gross SS et al. (2005) Angiotensin-II-induced oxidative stress elicits hypoadiponectinaemia in rats. Diabetologia 48:1066–1074

    Article  PubMed  CAS  Google Scholar 

  • Haufe S, Engeli S, Kast P et al. (2011) Randomized comparison of reduced fat and reduced carbohydrate hypocaloric diets on intrahepatic fat in overweight and obese human subjects. Hepatology 53:1504–1514

    Article  PubMed  CAS  Google Scholar 

  • Hauner H, Entenmann G, Wabitsch M et al. (1989) Promoting effect of glucocorticoids on the differentiation of human adipozyte precursor cells cultured in a chemically defined medium. J Clin Invest 84:1663–1670

    Article  PubMed  CAS  Google Scholar 

  • Hauner H, Much D, Vollhardt C et al. (2012) Effect of reducing the n-6:n-3 long-chain PUFA ratio during pregnancy and lactation on infant adipose tissue growth within the first year of life: an open-label randomized controlled trial. Am J Clin Nutr 95:383–394

    Article  PubMed  CAS  Google Scholar 

  • Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39

    PubMed  CAS  Google Scholar 

  • Heldmaier G (1971) Zitterfreie Wärmebildung und Körpergröße bei Säugetieren. Zeitschrift für Vergleichende Physiologie 73:222–248

    Article  Google Scholar 

  • Hida K, Wada J, Eguchi J et al. (2005) Visceral adipose tissue-derived serine protease inhibitor: a unique insulin-sensitizing adipocytokine in obesity. Proc Natl Acad Sci USA 102:10610–10615

    Article  PubMed  CAS  Google Scholar 

  • Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M (2011) Peroxisome proliferator-activated receptor alpha (PPARalpha) induces PPARgamma coactivator 1alpha (PGC-1alpha) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286:43112–43122

    Article  PubMed  CAS  Google Scholar 

  • Hotamisligil GS, Johnson RS, Distel RJ et al. (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipozyte fatty acid binding protein. Science 274:1377–1379

    Article  PubMed  CAS  Google Scholar 

  • Hube F, Hauner H (1999) The role of TNF-alpha in human adipose tissue: prevention of weight gain at the expense of insulin resistance? Horm Metab Res 31:626–631

    Article  PubMed  CAS  Google Scholar 

  • Isakson P, Hammarstedt A, Gustafson B, Smith U (2009) Impaired preadipozyte differentiation in human abdominal obesity: role of Wnt, tumor necrosis factor-alpha, and inflammation. Diabetes 58:1550–1557

    Article  PubMed  CAS  Google Scholar 

  • Janke J, Engeli S, Gorzelniak K et al. Mature adipozytes inhibit in vitro differentiation of human preadipozytes via angiotensin type 1 receptors. Diabetes 51:1699–1707

    Google Scholar 

  • Javor ED, Cochran EK, Musso C et al. (2005) Long-term efficacy of leptin replacement in patients with generalized lipodystrophy. Diabetes 54:1994–2002

    Article  PubMed  CAS  Google Scholar 

  • Johnson F, Mavrogianni A, Ucci M, Vidal-Puig A, Wardle J (2011) Could increased time spent in a thermal comfort zone contribute to population increases in obesity? Obes Rev 12:543–551

    Article  PubMed  CAS  Google Scholar 

  • Jordan J, Tank J, Stoffels M et al. (2001) Interaction between beta-adrenergic receptor stimulation and nitric oxide release on tissue perfusion and metabolism. J Clin Endocrinol Metab 86:2803–2810

    Article  PubMed  CAS  Google Scholar 

  • Kadowaki T, Yamauchi T, Kubota N et al. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792

    Article  PubMed  CAS  Google Scholar 

  • Karpe F, Olivecrona T, Olivecrona G et al. (1998) Lipoprotein lipase transport in plasma: role of muscle and adipose tissues in regulation of plasma lipoprotein lipase concentrations. J Lipid Res 39:2387–2393

    PubMed  CAS  Google Scholar 

  • Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556

    Article  PubMed  CAS  Google Scholar 

  • Khan T, Muise ES, Iyengar P et al. (2009) Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 29:1575–1591

    Article  PubMed  CAS  Google Scholar 

  • Kingma B, Frijns A, van Marken LW (2012) The thermoneutral zone: implications for metabolic studies. Front Biosci (Elite Ed) 4:1975–1985

    Google Scholar 

  • Klingenspor M (2003) Cold-induced recruitment of brown adipose tissue thermogenesis. Exp Physiol 88:141–148

    Article  PubMed  CAS  Google Scholar 

  • Klingenspor M, Fromme T (2012) Brown adipose tissue. In: Symonds ME (ed), Adipose tissue biology. 1st ed. Springer, New York Dordrecht Heidelberg London. 39–79

    Chapter  Google Scholar 

  • Klingenspor M, Meywirth A, Stohr S, Heldmaier G (1994) Effect of unilateral surgical denervation of brown adipose tissue on uncoupling protein mRNA level and cytochrom-c-oxidase activity in the Djungarian hamster. J Comp Physiol [B] 163:664–670

    Article  CAS  Google Scholar 

  • Klöting N, Graham TE, Berndt J et al. (2007) Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab 6:79–87

    Article  PubMed  CAS  Google Scholar 

  • Kovsan J, Blüher M, Tarnovscki T et al. (2011) Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96:E268–277

    Article  PubMed  CAS  Google Scholar 

  • Lafontan M (2005) Fat cells: afferent and efferent messages define new approaches to treat obesity. Annu Rev Pharmacol Toxicol 45:119–146

    Article  PubMed  CAS  Google Scholar 

  • Langin D, Dicker A, Tavernier G et al. (2005) Adipozyte lipases and defect of lipolysis in human obesity. Diabetes. 54:3190–3197

    Article  PubMed  CAS  Google Scholar 

  • Langin D (2006) Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome. Pharmacol Res 53:482–491

    Article  PubMed  CAS  Google Scholar 

  • Large V, Peroni O, Letexier D et al. (2004) Metabolism of lipids in human white adipozyte. Diabetes Metab 30:294–309

    Article  PubMed  CAS  Google Scholar 

  • Lee P, Greenfield JR, Ho KK, Fulham MJ (2010) A critical appraisal of the prevalence and metabolic significance of brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 299:E601–E606

    Google Scholar 

  • Levine JA, Jensen MD, Eberhardt NL, O’Brien T (1998) Adipozyte macrophage colony-stimulating factor is a mediator of adipose tissue growth. J Clin Invest 101:1557–1564

    Article  PubMed  CAS  Google Scholar 

  • Marken L van WD, Schrauwen P (2011) Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol 301:R285–R296

    Article  CAS  Google Scholar 

  • Marken Lichtenbelt van WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  Google Scholar 

  • Massiéra F, Bloch-Faure M, Ceiler D et al. (2001) Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB J 15:2727–2729

    PubMed  Google Scholar 

  • Masuzaki H, Paterson J, Shinyama H et al. (2001) A transgenic model of visceral obesity and the metabolic syndrome. Science 294:2166–2170

    Article  PubMed  CAS  Google Scholar 

  • McQuaid SE, Humphreys SM, Hodson L et al. (2010) Femoral adipose tissue may accumulate the fat that has been recycled as VLDL and nonesterified fatty acids. Diabetes 59:2465–2473

    Article  PubMed  CAS  Google Scholar 

  • McQuaid SE, Hodson L, Neville MJ et al. (2011) Downregulation of adipose tissue fatty acid trafficking in obesity: a driver for ectopic fat deposition? Diabetes 60:47–55

    Article  PubMed  CAS  Google Scholar 

  • Merklin RJ (1974) Growth and distribution of human fetal brown fat. Anat Rec 178:637–645

    Article  PubMed  CAS  Google Scholar 

  • Meyer CW, Willershauser M, Jastroch M, Rourke BC, Fromme T, Oelkrug R, Heldmaier G, Klingenspor M (2010) Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am J Physiol Regul Integr Comp Physiol 299:R1396–R1406

    Article  PubMed  CAS  Google Scholar 

  • Miyahara Y, Nagaya N, Kataoka M et al. (2006) Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12:459–465

    Article  PubMed  CAS  Google Scholar 

  • Moro C, Crampes F, Sengenès C et al. (2004) Atrial natriuretic peptide contributes to physiological control of lipid mobilization in humans. FASEB J 18:908–910

    PubMed  CAS  Google Scholar 

  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108

    Article  PubMed  CAS  Google Scholar 

  • Nielsen S, Guo Z, Johnson CM et al. (2004) Splanchnic lipolysis in human obesity. J Clin Invest 113:1582–1588

    PubMed  CAS  Google Scholar 

  • Ortega FJ, Moreno-Navarrete JM, Pardo G et al. (2010) MiRNA expression profile of human subcutaneous adipose and during adipozyte differentiation. PLoS One 5:e9022

    Article  PubMed  CAS  Google Scholar 

  • Ouellet V, Labbe SM, Blondin DP, Phoenix S, Guerin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552

    Article  PubMed  CAS  Google Scholar 

  • Ozcan U, Cao Q, Yilmaz E et al. (2004). Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306:457–461

    Article  PubMed  CAS  Google Scholar 

  • Pai JK, Pischon T, Ma J et al. (2004) Inflammatory markers and the risk of coronary heart disease in men and women. N Engl J Med 351:2599–2610

    Article  PubMed  CAS  Google Scholar 

  • Pajvani UB, Trujillo ME, Combs TP et al. (2005) Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med 11:797–803

    Article  PubMed  CAS  Google Scholar 

  • Pasarica M, Tchoukalova YD, Heilbronn LK et al. (2009) Differential effect of weight loss on adipozyte size subfractions in patients with type 2 diabetes. Obesity 17:1976–1978

    Article  PubMed  CAS  Google Scholar 

  • Pedersen BK, Steensberg A, Fischer C et al. (2004) The metabolic role of IL-6 produced during exercise: is IL-6 an exercise factor? Proc Nutr Soc 63:263–267

    CAS  Google Scholar 

  • Pelleymounter MA, Cullen MJ, Baker MB et al. (1995) Effects of the obese gene-product on body-weight regulation in ob/ob Mice. Science 269:540–543

    Article  PubMed  CAS  Google Scholar 

  • Pischon T, Girman CJ, Hotamisligil GS et al. (2004) Plasma adiponectin levels and risk of myocardial infarction in men. JAMA 291:1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Planat-Benard V, Silvestre JS, Cousin B et al. (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  • Ravussin E, Galgani JE (2011) The implication of brown adipose tissue for humans. Annu Rev Nutr 31:33–47

    Article  PubMed  CAS  Google Scholar 

  • Razani B, Combs TP, Wang XB et al. (2002) Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyzeridemia with adipozyte abnormalities. J Biol Chem 277:8635–864

    Article  PubMed  CAS  Google Scholar 

  • Roberts R, Hodson L, Dennis AL et al. (2009) Markers of de novo lipogenesis in adipose tissue: associations with small adipozytes and insulin sensitivity in humans. Diabetologia 52:882–890

    Article  PubMed  CAS  Google Scholar 

  • Rolfe DF, Brand MD (1997) The physiological significance of mitochondrial proton leak in animal cells and tissues. Biosci Rep 17:9–16

    Article  PubMed  CAS  Google Scholar 

  • Rosen ED, MacDougald OA (2006) Adipozyte differentiation from the inside out. Nat Rev Mol Cell Biol7:885–896

    Article  CAS  Google Scholar 

  • Rupnick MA, Panigrahy D, Zhang CY et al. (2002) Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U.S.A 99:10730–10735

    Article  PubMed  CAS  Google Scholar 

  • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Sartipy P, Loskutoff DJ (2003) Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U.S.A 100:7265–7270

    Article  PubMed  CAS  Google Scholar 

  • Sellayah D, Bharaj P, Sikder D (2011) Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 14:478–490

    Article  PubMed  CAS  Google Scholar 

  • Sengenès C, Lolmede K, Zakaroff-Girard A et al. (2005) Preadipozytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. J Cell Physiol 114–122

    Google Scholar 

  • Skurk T, Lee YM, Hauner H (2001) Angiotensin II and its metabolites stimulate PAI-1 protein release from human adipozytes in primary culture. Hypertension 37:1336–1340

    Article  PubMed  CAS  Google Scholar 

  • Skurk T, van Harmelen V, Blum WF, Hauner H (2005) Angiotensin II promotes leptin production in cultured human fat cells by an ERK1/2–dependent pathway. Obes Res 13:969–973

    Article  PubMed  CAS  Google Scholar 

  • Skurk T, Alberti-Huber C, Herder C, Hauner H: Relationship between adipozyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92:1023–1033

    Google Scholar 

  • Skurk T, Hauner H (2012) Primary culture of human adipozyte precursor cells: expansion and differentiation. Methods Mol Biol806:215–226

    Article  CAS  Google Scholar 

  • Slavin BG, Ballard KW (1978) Morphological studies on the adrenergic innervation of white adipose tissue. Anat Rec 191:377–389

    Article  PubMed  CAS  Google Scholar 

  • Smith SA (2003) Central role of the adipozyte in the insulin-sensitising and cardiovascular risk modifying actions of the thiazolidinediones. Biochimie 85:1219–1230

    Article  PubMed  CAS  Google Scholar 

  • Soderlund V, Larsson SA, Jacobsson H (2007) Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur J Nucl Med Mol Imaging 34:1018–1022

    Article  PubMed  CAS  Google Scholar 

  • Spalding KL, Arner E, Westermark PO et al. (2008) Dynamics of fat cell turnover in humans. Nature 453:783–787

    Article  PubMed  CAS  Google Scholar 

  • Spencer M, Unal R, Zhu B et al. (2011) Adipose tissue extracellular matrix and vascular abnormalities in obesity and insulin resistance. J Clin Endocrinol Metab 96:E1990–1998

    Article  PubMed  CAS  Google Scholar 

  • Spranger J, Kroke A, Möhlig M et al. (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228

    Article  PubMed  CAS  Google Scholar 

  • Spranger J, Verma S, Gohring I et al. (2006) Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes 55:141–147

    Article  PubMed  CAS  Google Scholar 

  • Stefan N, Hennige AM, Staiger H et al. (2007) High circulating retinol-binding protein 4 is associated with elevated liver fat but not with total, subcutaneous, visceral, or intramyocellular fat in humans. Diabetes Care 30:1173–1178

    Article  PubMed  CAS  Google Scholar 

  • Symonds ME, Mostyn A, Pearce S, Budge H, Stephenson T (2003) Endocrine and nutritional regulation of fetal adipose tissue development. J Endocrinol 179:293–299

    Article  PubMed  CAS  Google Scholar 

  • Trujillo ME, Scherer PE (2006) Adipose tissue-derived factors: impact on health and disease. Endocr Rev 27:762–778

    PubMed  CAS  Google Scholar 

  • Tseng YH, Cypess AM, Kahn CR (2010) Cellular bioenergetics as a target for obesity therapy. Nat Rev Drug Discov 9:465–482

    Article  PubMed  CAS  Google Scholar 

  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, Ahrens MJ, Dudley AT, Norris AW, Kulkarni RN, Kahn CR (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Tso AW, Xu A, Sham PC et al. (2007) Serum adipozyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care 30:2667–2672

    Article  PubMed  CAS  Google Scholar 

  • Tuncman G, Erbay E, Hom X et al. (2006) A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyzeridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci U.S.A 103:6970–6975

    Article  PubMed  CAS  Google Scholar 

  • Unger RH (2002) Lipotoxic diseases. Annu Rev Med 53:319–336

    Article  PubMed  CAS  Google Scholar 

  • Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A, Berriel DM, Rozman J, Hrabe de AM, Nusing RM, Meyer CW, Wahli W, Klingenspor M, Herzig S (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipozytes. Science 328:1158–1161

    Article  PubMed  CAS  Google Scholar 

  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  PubMed  CAS  Google Scholar 

  • Virtanen KA, Lönnroth P, Parkkola R et al. (2002) Glukose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87:3902–3910

    Article  PubMed  CAS  Google Scholar 

  • Wallenius V, Wallenius K, Ahren B et al. (2002) Interleukin-6-deficient mice develop mature-onset obesity. Nat Med 8:75–79

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J (2006) Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439:484–489

    Article  PubMed  CAS  Google Scholar 

  • Weisberg SP, McCann D, Desai M et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808

    PubMed  CAS  Google Scholar 

  • Welsh GI, Griffiths MR, Webster KJ et al. (2004) Proteome analysis of adipogenesis. Proteomics 4:1042–1051

    Article  PubMed  CAS  Google Scholar 

  • Weyer C, Foley JE, Bogardus C et al. (2000) Enlarged subcutaneous abdominal adipozyte size, but not obesity itself, predicts type II diabetes independent of insulin resistance. Diabetologia 43:1498–1506

    Article  PubMed  CAS  Google Scholar 

  • Wirth A, Diehm C, Hanel W et al. (1985) Training-induced changes in serum lipids, fat tolerance, and adipose tissue metabolism in patients with hypertriglyzeridemia. Atherosclerosis 54:263–271

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Tso AW, Cheung BM et al. (2007) Circulating adipozyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 115:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Xu H, Barnes GT, Yang Q et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830

    PubMed  CAS  Google Scholar 

  • Yang Q, Graham TE, Mody N et al. (2005) Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature 436:356–362

    Article  PubMed  CAS  Google Scholar 

  • Yoshizaki T, Kusunoki C, Kondo M et al. (2012) Autophagy regulates inflammation in adipozytes. Biochem Biophys Res Commun 417:352–357

    Article  PubMed  CAS  Google Scholar 

  • Youn BS, Klöting N, Kratzsch J et al. (2008) Serum vaspin concentrations in human obesity and type 2 diabetes. Diabetes 57:372–377

    Article  PubMed  CAS  Google Scholar 

  • Zaragosi LE, Wdziekonski B, Brigand KL et al. (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipozyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12:R64

    Article  PubMed  CAS  Google Scholar 

  • Zechner R, Zimmermann R, Eichmann TO et al. (2012) Fat signals-lipases and lipolysis in lipid metabolism and signaling. Cell Metab 15:279–291

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Proenca R, Maffei M et al. (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA (2010) The adipose-derived stem cell: looking back and looking ahead. Mol Biol Cell 21:1783–1787

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Engeli, S., Skurk, T., Blüher, M., Klingenspor, M. (2013). Fettgewebe. In: Wirth, A., Hauner, H. (eds) Adipositas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22855-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22855-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22854-4

  • Online ISBN: 978-3-642-22855-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics