Skip to main content

Bounds for Approximate Solutions of Fredholm Integral Equations Using Kernel Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6791))

Abstract

Approximation of solutions of integral equations by networks with kernel units is investigated theoretically. There are derived upper bounds on speed of decrease of errors in approximation of solutions of Fredholm integral equations by kernel networks with increasing numbers of units. The estimates are obtained for Gaussian and degenerate kernels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lovitt, W.V.: Linear Integral Equations. Dover, New York (1950)

    Google Scholar 

  2. Lonseth, A.T.: Sources and applications of integral equations. SIAM Review 19, 241–278 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Effati, S., Buzhabadi, R.: A neural network approach for solving Fredholm integral equations of the second kind. Neural Computing & and Applications (2010), doi:10.1007/s00521–010–0489–y

    Google Scholar 

  4. Alipanah, A., Esmaeili, S.: Numerical solution of the two-dimensional Fredholm integral equations by Gaussian radial basis function. J. of Comput. and Appl. Math (2009), doi:doi:10.1016/j.cam.2009.11.053

    Google Scholar 

  5. Golbabai, A., Seifollahi, S.: Numerical solution of the second kind integral equations using radial basis function networks. Appl. Math. and Comput. 174, 877–883 (2006)

    MATH  MathSciNet  Google Scholar 

  6. Kůrková, V., Sanguineti, M.: Geometric upper bounds on rates of variable-basis approximation. IEEE Trans. on Inf. Th. 54, 5681–5688 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Gnecco, G., Kůrková, V., Sanguineti, M.: Some comparisons of complexity in dictionary-based and linear computational models. Neural Networks 24, 171–182 (2011)

    Article  MATH  Google Scholar 

  8. Alessandri, A., Sanguineti, M.: Optimization of approximating networks for optimal fault diagnosis. Optim. Meth. and Soft. 20, 235–260 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Giulini, S., Sanguineti, M.: Approximation schemes for functional optimization problems. J. of Optim. Th. and Appl. 140, 33–54 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gnecco, G., Sanguineti, M.: Accuracy of suboptimal solutions to kernel principal component analysis. Comput. Optim. and Appl. 42, 265–287 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kainen, P.C., Kůrková, V., Sanguineti, M.: Complexity of Gaussian radial-basis networks approximating smooth functions. J. of Complexity 25, 63–74 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kůrková, V., Sanguineti, M.: Approximate minimization of the regularized expected error over kernel models. Math. of Op. Res. 33, 747–756 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gribonval, R., Vandergheynst, P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. on Inf. Th. 52, 255–261 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jones, L.K.: A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann. of Stat. 20, 608–613 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  15. Barron, A.R.: Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. on Inf. Th. 39, 930–945 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  16. Darken, C., Donahue, M., Gurvits, L., Sontag, E.: Rate of approximation results motivated by robust neural network learning. In: Proc. 6th Annual ACM Conf. on Computational Learning Theory, pp. 303–309 (1993)

    Google Scholar 

  17. Girosi, F.: Approximation error bounds that use VC- bounds. In: Proc. Int. Conf. on Artificial Neural Networks, pp. 295–302 (1995)

    Google Scholar 

  18. Gurvits, L., Koiran, P.: Approximation and learning of convex superpositions. J. of Computer and System Sciences 55, 161–170 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    Google Scholar 

  20. Atkinson, K.: The Numerical Solution of Integral Equations of the Second Kind. Cambridge Univ. Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  21. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numerica 8, 143–195 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Park, J., Sandberg, I.W.: Approximation and radial-basis-function networks. Neural Computation 5, 305–316 (1993)

    Article  Google Scholar 

  23. Mhaskar, H.N.: Versatile Gaussian networks. In: Proc. of IEEE Workshop of Nonlinear Image Processing, pp. 70–73 (1995)

    Google Scholar 

  24. Dudley, R.M.: Balls in \(\mathcal{R}^k\) do not cut all subsets of k+2 points. Advances in Math. 31, 306–308 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  25. Tricomi, F.G.: Integral Equations. Interscience, New York (1957)

    MATH  Google Scholar 

  26. Sontag, E.: VC dimension of neural networks. In: Bishop, C. (ed.) Neural Networks and Machine Learning, pp. 69–95. Springer, Berlin (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gnecco, G., Kůrková, V., Sanguineti, M. (2011). Bounds for Approximate Solutions of Fredholm Integral Equations Using Kernel Networks. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds) Artificial Neural Networks and Machine Learning – ICANN 2011. ICANN 2011. Lecture Notes in Computer Science, vol 6791. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21735-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21735-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21734-0

  • Online ISBN: 978-3-642-21735-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics