Skip to main content

Anisakid Nematode (Ascaridoidea) Life Cycles and Distribution: Increasing Zoonotic Potential in the Time of Climate Change?

  • Chapter
  • First Online:
Progress in Parasitology

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 2))

  • 2222 Accesses

Abstract

Parasitic nematodes are known as important pathogens that cause problems for human and animal health. Some of them naturally inhabit the marine environment, where they are widespread and can be found in a variety of different hosts. Food-borne zoonoses via aquatic animals are most often linked to anisakid nematodes of the genera Anisakis Dujardin, 1845, Contracaecum Railliet and Henry, 1912, and Pseudoterranova Mozgovoi, 1951. These are commonly found in the digestive tract of marine mammals, and infect aquatic invertebrates and vertebrates as intermediate hosts. The most widely distributed whale worms Anisakis spp. involve cetaceans as final and planktonic copepods, euphausiids, squids and teleosts as intermediate or paratenic hosts. Painful infections of the digestive tract in humans originate through consumption of raw or semi-raw fisheries products, for example fish and squid. Recent molecular studies revealed the existence of morphologically similar but genetically different cryptic species (‘sibling species’) within the anisakids. Among these, A. simplex (s.s.) is responsible for the highest number of recorded human infections. Molecular studies of Anisakis larvae from various parts of the world Oceans demonstrate an uneven species distribution, with A. simplex (s.s.) being limited to the northern hemisphere. Another species, A. typica, has not yet been connected to this disease, and seems to be restricted to the tropical regions. This chapter presents the present state of knowledge about this widespread group of fish parasites, including the importance as human pathogens, their life cycle biology, biogeography and phylogeny. The distribution of the currently recognized Anisakis species is summarized and combined with the number of known cases of human anisakiasis. We suggest that pathogenicity for humans is different among the Anisakis siblings, providing a possible explanation for uneven disease records worldwide. The possibility of a changing risk of anisakidosis in the time of climate change is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anadón AM, Romarís F, Escalante M, Rodríguez E, Gárate T, Cuéllar C, Ubeira FM (2009) The Anisakis simplex Anis s 7 major allergen as an indicator of true Anisakis infections. Clin Exp Immunol 156:471–478

    Article  PubMed  Google Scholar 

  • Anderson RC (1984) The origins of zooparasitic nematodes. Can J Zool 62:317–328

    Article  Google Scholar 

  • Anderson RC (1996) Why do fish have so few roundworm (nematode) parasites? Environ Biol Fish 6:1–5

    Article  Google Scholar 

  • Anderson RC (2000) Nematode parasites of vertebrates – their development and transmission, 2nd edn. CAB International, Wallingford

    Book  Google Scholar 

  • Audicana MT, Kennedey MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21(2):360–379

    Article  PubMed  CAS  Google Scholar 

  • Audicana MT, Ansotegui IJ, De Corres LF, Kennedey MW (2002) Anisakis simplex: dangerous – dead and alive? Trends Parasitol 18:20–25

    Article  PubMed  Google Scholar 

  • Audicana MT, del Pozo MD, Iglesias R, Ubeira FM (2003) Anisakis simplex and Pseudoterranova decipiens. In: Miliotis MD, Bier JW (eds) International handbook of foodborne pathogens. Marcel Dekker, New York, pp 613–636

    Google Scholar 

  • Blaxter ML (2003) Nematoda: genes, genomes and the evolution of parasitism. Adv Parasitol 54:102–197

    Google Scholar 

  • Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1989) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75

    Article  Google Scholar 

  • Blaxter ML, Dorris M, De Ley P (2000) Patterns and processes in the evolution of animal parasitic nematodes. Nematology 2:43–55

    Article  Google Scholar 

  • Cho TH, Park HY, Cho S, Sohn J, Yoon YW, Cho JE, Cho SW (2005) The time course of biological and immunochemical allergy states induced by Anisakis simplex larvae in rats. Clin Exp Immunol 143:203–208

    Article  Google Scholar 

  • Couture C, Measures L, Gagnon J, Desbiens C (2003) Human intestinal anisakiosis due to consumption of raw salmon. Am J Surg Pathol 27:1167–1172

    Article  PubMed  Google Scholar 

  • Cross MA, Collins C, Campbell N, Watts PC, Chubb JC, Cunningham CO, Hatfield EMC, MacKenzie K (2007) Levels of intra-host and temporal sequence variation in a large CO1 sub-units from Anisakis simplex sensu stricto (Rudolphi 1809) (Nematoda: Anisakidae): implications for fisheries management. Mar Biol 151:695–702

    Article  Google Scholar 

  • D’Amelio S, Mathiopoulus KD, Santos C, Pugachev ON, Webb SC, Picanço M, Paggi L (2000) Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase chain reaction-based restriction fragment length polymorphism. Int J Parasitol 30:223–226

    Article  PubMed  Google Scholar 

  • D’Amelio S, Barros NB, Ingrosso S, Fauquier DA, Russo R, Paggi L (2007) Genetic characterization of members of the genus Contracaecum (Nematoda: Anisakidae) from fish-eating birds from west-central Florida, USA, with evidence of new species. Parasitology 134:1041–1051

    Article  PubMed  Google Scholar 

  • Dailey MD (2001) Parasitic diseases. In: Dierauf LA, Gulland MD (eds) Marine mammal medicine. CRC Press, Boca Raton, pp 357–379

    Chapter  Google Scholar 

  • Daschner A, Alonso-Gomez A, Cabanas R, Suarez-de-Parga JM, Lopez Serrano MC (2000) Gastroallergic anisakiasis: borderline between food allergy and parasitic disease – clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol 105:176–181

    Article  PubMed  CAS  Google Scholar 

  • De Ley P (2006) A quick tour of nematode diversity and the backbone of nematode phylogeny. In: WormBook (ed) The C. elegans Research Community, WormBook 1.41.1. The C. Elegans Research Community, The C. Elegans Research Community, http://www.WormBook.org

  • De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 1–30

    Chapter  Google Scholar 

  • Des Clers S (1991) Functional relationship between sealworm (Pseudoterranova decipiens, Neamtoda, Ascaridoidea) burden and host size in Atlantic cod (Gadus morhua). Proc R Soc Lond B 245:85–89

    Article  CAS  Google Scholar 

  • Des Clers S, Andersen K (1995) Sealworm (Pseudoterranova decipiens) transmission to fish trawled from Hvaler, Oslofjord, Norway. J Fish Biol 46:8–17

    Article  Google Scholar 

  • Dorris M, De Ley P, Blaxter ML (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today 15:188–193

    Article  PubMed  CAS  Google Scholar 

  • Farjallah S, Merella P, Ingrosso S, Rotta A, Slimane BB, Garippa G, Said K, Busi M (2008) Molecular evidence for the occurrence of Contracaecum rudolphii A (Nematoda: Anisakidae) in shag Phalacrocorax aristotelis (Linnaeus) (Aves: Phalacrocoracidae) from Sardinia (western Mediterranean Sea). Parasitol Int 57:437–440

    Article  PubMed  CAS  Google Scholar 

  • Fuentes V, Barranco R, Sanchez I, Sierra Z, Cabrerizo S, Vicente ME, Rubio M, Baeza ML (2002) Subclinical Anisakis simplex sensitization: a five-year follow up. J Allergy Clin Immunol 109:S218

    Article  Google Scholar 

  • Hays R, Measures LN, Huot J (1998a) Euphausiids as intermediate hosts of Anisakis simplex in the St. Lawrence estuary. Can J Zool 76:1226–1235

    Google Scholar 

  • Hays R, Measures LN, Huot J (1998b) Capelin (Mallotus villosus) herring (Clupea harengus) as paratenic hosts of Anisakis simplex, a parasite of beluga (Delphinapterus leucas) in the St. Lawrence estuary. Can J Zool 76:1411–1417

    Google Scholar 

  • Hsieh CH, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435:336–340

    Article  PubMed  CAS  Google Scholar 

  • Ishikura H, Kikuchi K (1990) Intestinal anisakiasis in Japan. Springer, Tokyo

    Google Scholar 

  • Jiao Y (2009) Regime shift in marine ecosystems and implications for fisheries management, a review. Rev Fish Biol Fish 19:177–191

    Article  Google Scholar 

  • Kagei A, Isogaki I (1992) A case of acute abdominal syndrome caused by the presence of a large number of Anisakis simplex larvae. Int J Parasitol 22:251–253

    Article  PubMed  CAS  Google Scholar 

  • Kaneko JJ (1991) Parasite hazards of public health significance to U.S. consumers of raw fish. IAAAM Proc 22:130–134

    Google Scholar 

  • Kellermanns E, Klimpel S, Palm HW (2007) Molecular identification of ascaridoid nematodes from the deep-sea onion-eye grenadier (Macrourus berglax) from the East Greenland Sea. Deep Sea Res Pt I 54:2194–2202

    Article  Google Scholar 

  • Kennedey MW (2000) Immune response to Anisakis simplex and other ascarid nematodes. Allergy 55(Suppl 59):7–13

    Article  Google Scholar 

  • Kijewska A, Rokicki J, Sitko J, Wegrzyn G (2002) Ascaridoidea: a simple DNA assay for identification of 11 species infecting marine and freshwater fish, mammals and fish-eating birds. Exp Parasitol 101:35–39

    Article  PubMed  CAS  Google Scholar 

  • Klimpel S, Rückert S (2005) Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitol Res 97:141–149

    Article  PubMed  Google Scholar 

  • Klimpel S, Palm HW, Rückert S, Piatkowski U (2004) The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol Res 94:1–9

    Article  PubMed  Google Scholar 

  • Klimpel S, Kellermanns E, Palm HW, Moravec F (2007) Zoogeography of fish parasites of the pearlside (Maurolicus muelleri), with genetic evidence of Anisakis simplex (s.s.) from the Mid-Atlantic Ridge. Mar Biol 152:725–732

    Article  Google Scholar 

  • Klimpel S, Kellermanns E, Palm HW (2008) The role of pelagic swarm fish (Myctophidae: Teleostei) in the oceanic life cycle of Anisakis sibling species at the Mid-Atlantic Ridge, Central Atlantic. Parasitol Res 104:43–53

    Article  PubMed  Google Scholar 

  • Klimpel S, Busch MW, Kuhn T, Rohde A, Palm HW (2010) The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar Ecol Prog Ser 403:1–11

    Article  CAS  Google Scholar 

  • Klöser H, Plötz J, Palm H, Bartsch A, Hubold G (1992) Adjustment of anisakid nematode life cycles to the high Antarctic food web as shown by Contracaecum radiatum and C. osculatum in the Weddell sea. Antarct Sci 4:171–178

    Article  Google Scholar 

  • Klyashtorin L (2001) Climate change and long-term fluctuations of commercial catches. The possibility of forecasting. FAO, Rome

    Google Scholar 

  • Køie M (2001) Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheathed and large third-stage larvae of Anisakis simplex (Nematoda, Ascaridoidea, Anisakidae). Parasitol Res 87:32–36

    PubMed  Google Scholar 

  • Køie M, Fagerholm HP (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitol Res 81:481–489

    Article  PubMed  Google Scholar 

  • Køie M, Berland B, Burt MDB (1995) Development to third-stage larvae occurs in the eggs of Anisakis simplex and Pseudoterranova decipiens (Nematoda, Ascaridoidea, Anisakidae). Can J Fish Aquat Sci 52:134–139

    Article  Google Scholar 

  • Kuhn T (2010) Molecular studies on marine ascaridoid nematodes-Diploma thesis, Heinrich Heine University, Düsseldorf

    Google Scholar 

  • Levsen A, Lunestad BT (2010) Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Vet Parasitol 171(3-4):247–253. doi:10.1016/j.vetpar.2010.03.039

    Article  PubMed  Google Scholar 

  • Li A, D’Amelio S, Paggi L, He F, Gasser RB, Lun Z, Abollo E, Turchetto M, Zhu X (2005) Genetic evidence for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) and the validity of Contracaecum septentrionale (Kreis, 1955) (Nematoda: Anisakidae). Parasitol Res 96:361–366

    Article  PubMed  Google Scholar 

  • Lile NK (1998) Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology. J Fish Biol 53:945–953

    Article  Google Scholar 

  • Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27:467–484

    PubMed  CAS  Google Scholar 

  • Marques JF, Cabral HN, Busi M, D’Amelio S (2006) Molecular identification of Anisakis species from Pleuronectiformes off the Portuguese coast. J Helminthol 80:47–51

    Article  PubMed  CAS  Google Scholar 

  • Mattiucci S, Nascetti G (2006) Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasite 13:99–113

    PubMed  CAS  Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Adv Parasitol 66:47–148

    Article  PubMed  Google Scholar 

  • Mattiucci S, Nascetti G, Cianchi R, Paggi L, Arduino P, Margolis L, Brattey J, Webb SC, D’Amelio S, Orecchia P, Bullini L (1997) Genetic and ecological data on the Anisakis simplex complex with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). J Parasitol 83:401–416

    Article  PubMed  CAS  Google Scholar 

  • Mattiucci S, Paggi L, Nascetti G, Portes SC, Costa G, Di Beneditto AP, Ramos R, Argyrou M, Cianchi R, Bullini L (2002) Genetic markers in the study of Anisakis typica (Diesing, 1890): larval identification and genetic relationships with other species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae). Syst Parasitol 51:159–170

    Article  PubMed  CAS  Google Scholar 

  • Mattiucci S, Nascetti G, Dailey M, Webb SC, Barros N, Cianchi R, Bullini L (2005) Evidence for a new species of Anisakis Dujardin, 1845: morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst Parasitol 61:157–171

    Article  PubMed  Google Scholar 

  • Mattiucci S, Abaunza P, Damiano S, Garcia A, Santos MN, Nascetti G (2007) Distribution of Anisakis larvae identified by genetic markers and their use for stock characterization of demersal and pelagic fish from European waters: an update. J Helminthol 81:117–127

    Article  PubMed  CAS  Google Scholar 

  • Mattiucci S, Paoletti M, Webb SC, Sardella N, Timi JT, Berland B, Nascetti G (2008a) Genetic relationships among species of Contracaecum Railliet and Henry, 1912 and Phocascaris Höst, 1932 (Nematoda: Anisakidae) from pinnipeds based on mitochondrial cox2 sequences, and congruence with allozyme data. Parasite 15:408–419

    PubMed  CAS  Google Scholar 

  • Mattiucci S, Paoletti M, Olivero-Verbel J, Baldiris R, Arroyo-Salgado B, Garbin L, Navone G, Nascetti G (2008b) Contracaecum bioccai n. sp. from the brown pelican Pelecanus occidentalis (L.) in Colombia (Nematoda: Anisakidae): morphology, molecular evidence and its genetic relationship with congeners from fish-eating birds. Syst Parasitol 69(2):101–121

    Article  PubMed  Google Scholar 

  • Mattiucci S, Paoletti M, Webb SC (2009) Anisakis nascettii n.sp. (Neamtoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst Parasitol 74:199–217

    Article  PubMed  Google Scholar 

  • McClelland G (1990) Larval sealworm (Pseudoterranova decipiens) infections in benthic macrofauna. In: Bowen WD (ed) Population biology of sealworm (Pseudoterranova decipiens) in relation to its intermediate and seal hosts. Canadian Bulletin of Fisheries & Aquatic Sciences, Ottawa, pp 47–65

    Google Scholar 

  • McClelland G (2002) The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review. Parasitology 124:S183–S203

    Article  PubMed  Google Scholar 

  • McClelland G (2005) Nematoda (roundworms). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 104–115

    Google Scholar 

  • Meldal BHM, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen AR, Blaxter ML, Rogers AD, Lambshead PJD (2007) An improved molecular phylogeny of the Nematoda with special emphases on marine taxa. Mol Phylogenet Evol 42:622–636

    Article  PubMed  CAS  Google Scholar 

  • Mitchell GF (1991) Co-evolution of parasites and adaptive immune response. Immunol Today 12:A2–A5

    Article  PubMed  CAS  Google Scholar 

  • Nadler SA, D’Amelio S, Dailey MD, Paggi L, Siu S, Sakanari JA (2005) Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from Northern Pacific marine mammals. J Parasitol 91:1413–1429

    Article  PubMed  CAS  Google Scholar 

  • Palm HW (1999) Ecology of Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Anisakidae) from Antarctic waters. Parasitol Res 85:638–646

    Article  PubMed  CAS  Google Scholar 

  • Palm HW (2004) The Trypanorhyncha diesing, 1863. PKSPL-IPB Press, Bogor

    Google Scholar 

  • Palm HW (2010) Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and global change? Springer, Berlin

    Google Scholar 

  • Palm HW, Klimpel S (2007) Evolution of parasitic life in the ocean. Trends Parasitol 23:10–12

    Article  PubMed  Google Scholar 

  • Palm HW, Klimpel S (2008) Metazoan fish parasites of Macrourus berglax Lacepéde, 1801 and other macrourids of the North Atlantic: invasion of the deep sea from the continental shelf. Deep Sea Res Pt II 55:236–242

    Article  Google Scholar 

  • Palm HW, Andersen K, Klöser H, Plötz J (1994) Occurrence of Pseudoterranova decipiens (Nematoda) in fish from the southeastern Weddell Sea (Antarctic). Polar Biol 14:539–544

    Article  Google Scholar 

  • Palm HW, Reimann N, Spindler M, Plötz J (1998) The role of the rock cod Notothenia coriiceps in the life cycle of Antarctic parasites. Polar Biol 19:399–406

    Article  Google Scholar 

  • Palm HW, Klimpel S, Walter T (2007) Demersal fish parasite fauna around the South Shetland Islands: high species richness and low host specificity in deep Antarctic waters. Polar Biol 30:1513–1522

    Article  Google Scholar 

  • Palm HW, Damriyasa IM, Linda OIBM (2008) Molecular genotyping of Anisakis Dujardin, 1845 (Nematoda: Ascaridoidea: Anisakidae) larvae from marine fish of Balinese and Javanese waters, Indonesia. Helminthologia 45:3–12

    Article  CAS  Google Scholar 

  • Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36:1259–1267

    Article  PubMed  Google Scholar 

  • Petersen F, Palm HW, Möller H, Cuzi MA (1993) Flesh parasites of fish from central Philippine waters. Dis Aquat Org 15:81–86

    Article  Google Scholar 

  • Plath F, Holle A, Zendeh D, Möller FW, Barten M, Reisinger EC, Liebe S (2001) Anisakiasis des Magens – ein Fallbericht aus Deutschland. Z Gastroenterol 39:177–180

    Article  PubMed  CAS  Google Scholar 

  • Pontes T, D’Amelio S, Costa G, Paggi L (2005) Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. J Parasitol 91:1430–1434

    Article  PubMed  CAS  Google Scholar 

  • Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709

    Article  PubMed  CAS  Google Scholar 

  • Rohde K (1984) Diseases caused by Metazoans: helminths. In: Kinn O (ed) Diseases of marine animals, IV, Part 1st edn. Biologische Anstalt Helgoland, Hamburg, pp 193–319

    Google Scholar 

  • Sakanari JA, McKerrow JH (1989) Anisakiasis. Clin Microbiol Rev 2:278–284

    PubMed  CAS  Google Scholar 

  • Shamshi S, Norman R, Gasser R, Beveridge I (2009a) Redescription and genetic characterization of selected Contracaecum spp. (Nematoda: Anisakidae) from various hosts in Australia. Parasitol Res 104:1507–1525

    Article  Google Scholar 

  • Shamshi S, Norman R, Gasser R, Beveridge I (2009b) Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) Nematoda: Anisakidae) in Australia. Parasitol Res 105:829–838

    Google Scholar 

  • Smith JW (1999) Ascaridoid Nematodes and pathology of the alimentary tract and its associated organs in vertebrates, including man: a literature review. Helminthol Abstr 68:49–96

    Google Scholar 

  • Steele JH (1998) Regime shifts in marine ecosystems. Ecol Appl 8:33–36

    Google Scholar 

  • Steele JH (2004) Regime shifts in the ocean: reconciling observations and theory. Prog Ocean 60:135–141

    Article  Google Scholar 

  • Szostakowska B, Myjak P, Kur J (2002) Identification of aniskaid nematodes from the Southern Baltic Sea using PCR-based methods. Mol Cell Probes 16:111–118

    Article  PubMed  CAS  Google Scholar 

  • Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, Maizels RM (2005) Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 174:4924–4933

    PubMed  CAS  Google Scholar 

  • Torres P, Sierpe V, Schlatter R (1983) Occurrence of Contracaecum rudolphii in new hosts in Chile. Z Parasitenkd 69:397–399

    Article  Google Scholar 

  • Valentini A, Mattiucci S, Bondanelli P, Webb SC, Mignucci-Giannone A, Colom-Llavina MM, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J Parasitol 92:156–166

    Article  PubMed  CAS  Google Scholar 

  • Van Thiel PH (1962) Anisakiasis. Parasitology 52:16–17

    Google Scholar 

  • Wijova M, Moravec F, Horak A, Lukes J (2006) Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dracunculoid nematodes inferred from SSU rRNA gene sequences. Int J Parasitol 36:1067–1075

    Article  PubMed  CAS  Google Scholar 

  • Williams H, Jones A (1994) Parasitic worms of fish. Taylor & Francis, London

    Google Scholar 

  • Zhu XQ, Gasser RB, Jacobs DE, Hung GC, Chilton NB (2000a) Relationships among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitol Res 86:738–744

    Article  PubMed  CAS  Google Scholar 

  • Zhu XQ, D’Amelio S, Paggi L, Gasser RB (2000b) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitol Res 86:677–683

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, D’Amelio S, Hu M, Paggi L, Gasser RB (2001) Electrophoretic detection of population variation within Contracaecum ogmorhini (Nematoda: Ascaridoidea: Anisakidae). Electrophoresis 22:1930–1934

    Article  PubMed  CAS  Google Scholar 

  • Zhu XQ, D’Amelio S, Palm HW, Paggi L, George-Nascimento M, Gasser RB (2002) SSCP-based identification of members within the Pseudoterranova decipiens complex (Nematoda: Ascaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA. Parasitology 124:615–623

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by the German Research Council (DFG KL 2087/1-1, 1–2), by the Research and Innovation funds of the Heinrich-Heine-University Düsseldorf, and the Gesellschaft für Ichthyologie e.V. (GiF). Dr. R. Bray (The Natural History Museum London) provided helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sven Klimpel or Harry W. Palm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klimpel, S., Palm, H.W. (2011). Anisakid Nematode (Ascaridoidea) Life Cycles and Distribution: Increasing Zoonotic Potential in the Time of Climate Change?. In: Mehlhorn, H. (eds) Progress in Parasitology. Parasitology Research Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21396-0_11

Download citation

Publish with us

Policies and ethics