Abstract
Parasitic nematodes are known as important pathogens that cause problems for human and animal health. Some of them naturally inhabit the marine environment, where they are widespread and can be found in a variety of different hosts. Food-borne zoonoses via aquatic animals are most often linked to anisakid nematodes of the genera Anisakis Dujardin, 1845, Contracaecum Railliet and Henry, 1912, and Pseudoterranova Mozgovoi, 1951. These are commonly found in the digestive tract of marine mammals, and infect aquatic invertebrates and vertebrates as intermediate hosts. The most widely distributed whale worms Anisakis spp. involve cetaceans as final and planktonic copepods, euphausiids, squids and teleosts as intermediate or paratenic hosts. Painful infections of the digestive tract in humans originate through consumption of raw or semi-raw fisheries products, for example fish and squid. Recent molecular studies revealed the existence of morphologically similar but genetically different cryptic species (‘sibling species’) within the anisakids. Among these, A. simplex (s.s.) is responsible for the highest number of recorded human infections. Molecular studies of Anisakis larvae from various parts of the world Oceans demonstrate an uneven species distribution, with A. simplex (s.s.) being limited to the northern hemisphere. Another species, A. typica, has not yet been connected to this disease, and seems to be restricted to the tropical regions. This chapter presents the present state of knowledge about this widespread group of fish parasites, including the importance as human pathogens, their life cycle biology, biogeography and phylogeny. The distribution of the currently recognized Anisakis species is summarized and combined with the number of known cases of human anisakiasis. We suggest that pathogenicity for humans is different among the Anisakis siblings, providing a possible explanation for uneven disease records worldwide. The possibility of a changing risk of anisakidosis in the time of climate change is discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anadón AM, Romarís F, Escalante M, Rodríguez E, Gárate T, Cuéllar C, Ubeira FM (2009) The Anisakis simplex Anis s 7 major allergen as an indicator of true Anisakis infections. Clin Exp Immunol 156:471–478
Anderson RC (1984) The origins of zooparasitic nematodes. Can J Zool 62:317–328
Anderson RC (1996) Why do fish have so few roundworm (nematode) parasites? Environ Biol Fish 6:1–5
Anderson RC (2000) Nematode parasites of vertebrates – their development and transmission, 2nd edn. CAB International, Wallingford
Audicana MT, Kennedey MW (2008) Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 21(2):360–379
Audicana MT, Ansotegui IJ, De Corres LF, Kennedey MW (2002) Anisakis simplex: dangerous – dead and alive? Trends Parasitol 18:20–25
Audicana MT, del Pozo MD, Iglesias R, Ubeira FM (2003) Anisakis simplex and Pseudoterranova decipiens. In: Miliotis MD, Bier JW (eds) International handbook of foodborne pathogens. Marcel Dekker, New York, pp 613–636
Blaxter ML (2003) Nematoda: genes, genomes and the evolution of parasitism. Adv Parasitol 54:102–197
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WK (1989) A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75
Blaxter ML, Dorris M, De Ley P (2000) Patterns and processes in the evolution of animal parasitic nematodes. Nematology 2:43–55
Cho TH, Park HY, Cho S, Sohn J, Yoon YW, Cho JE, Cho SW (2005) The time course of biological and immunochemical allergy states induced by Anisakis simplex larvae in rats. Clin Exp Immunol 143:203–208
Couture C, Measures L, Gagnon J, Desbiens C (2003) Human intestinal anisakiosis due to consumption of raw salmon. Am J Surg Pathol 27:1167–1172
Cross MA, Collins C, Campbell N, Watts PC, Chubb JC, Cunningham CO, Hatfield EMC, MacKenzie K (2007) Levels of intra-host and temporal sequence variation in a large CO1 sub-units from Anisakis simplex sensu stricto (Rudolphi 1809) (Nematoda: Anisakidae): implications for fisheries management. Mar Biol 151:695–702
D’Amelio S, Mathiopoulus KD, Santos C, Pugachev ON, Webb SC, Picanço M, Paggi L (2000) Genetic markers in ribosomal DNA for the identification of members of the genus Anisakis (Nematoda: Ascaridoidea) defined by polymerase chain reaction-based restriction fragment length polymorphism. Int J Parasitol 30:223–226
D’Amelio S, Barros NB, Ingrosso S, Fauquier DA, Russo R, Paggi L (2007) Genetic characterization of members of the genus Contracaecum (Nematoda: Anisakidae) from fish-eating birds from west-central Florida, USA, with evidence of new species. Parasitology 134:1041–1051
Dailey MD (2001) Parasitic diseases. In: Dierauf LA, Gulland MD (eds) Marine mammal medicine. CRC Press, Boca Raton, pp 357–379
Daschner A, Alonso-Gomez A, Cabanas R, Suarez-de-Parga JM, Lopez Serrano MC (2000) Gastroallergic anisakiasis: borderline between food allergy and parasitic disease – clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol 105:176–181
De Ley P (2006) A quick tour of nematode diversity and the backbone of nematode phylogeny. In: WormBook (ed) The C. elegans Research Community, WormBook 1.41.1. The C. Elegans Research Community, The C. Elegans Research Community, http://www.WormBook.org
De Ley P, Blaxter ML (2002) Systematic position and phylogeny. In: Lee DL (ed) The biology of nematodes. Taylor & Francis, London, pp 1–30
Des Clers S (1991) Functional relationship between sealworm (Pseudoterranova decipiens, Neamtoda, Ascaridoidea) burden and host size in Atlantic cod (Gadus morhua). Proc R Soc Lond B 245:85–89
Des Clers S, Andersen K (1995) Sealworm (Pseudoterranova decipiens) transmission to fish trawled from Hvaler, Oslofjord, Norway. J Fish Biol 46:8–17
Dorris M, De Ley P, Blaxter ML (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitol Today 15:188–193
Farjallah S, Merella P, Ingrosso S, Rotta A, Slimane BB, Garippa G, Said K, Busi M (2008) Molecular evidence for the occurrence of Contracaecum rudolphii A (Nematoda: Anisakidae) in shag Phalacrocorax aristotelis (Linnaeus) (Aves: Phalacrocoracidae) from Sardinia (western Mediterranean Sea). Parasitol Int 57:437–440
Fuentes V, Barranco R, Sanchez I, Sierra Z, Cabrerizo S, Vicente ME, Rubio M, Baeza ML (2002) Subclinical Anisakis simplex sensitization: a five-year follow up. J Allergy Clin Immunol 109:S218
Hays R, Measures LN, Huot J (1998a) Euphausiids as intermediate hosts of Anisakis simplex in the St. Lawrence estuary. Can J Zool 76:1226–1235
Hays R, Measures LN, Huot J (1998b) Capelin (Mallotus villosus) herring (Clupea harengus) as paratenic hosts of Anisakis simplex, a parasite of beluga (Delphinapterus leucas) in the St. Lawrence estuary. Can J Zool 76:1411–1417
Hsieh CH, Glaser SM, Lucas AJ, Sugihara G (2005) Distinguishing random environmental fluctuations from ecological catastrophes for the North Pacific Ocean. Nature 435:336–340
Ishikura H, Kikuchi K (1990) Intestinal anisakiasis in Japan. Springer, Tokyo
Jiao Y (2009) Regime shift in marine ecosystems and implications for fisheries management, a review. Rev Fish Biol Fish 19:177–191
Kagei A, Isogaki I (1992) A case of acute abdominal syndrome caused by the presence of a large number of Anisakis simplex larvae. Int J Parasitol 22:251–253
Kaneko JJ (1991) Parasite hazards of public health significance to U.S. consumers of raw fish. IAAAM Proc 22:130–134
Kellermanns E, Klimpel S, Palm HW (2007) Molecular identification of ascaridoid nematodes from the deep-sea onion-eye grenadier (Macrourus berglax) from the East Greenland Sea. Deep Sea Res Pt I 54:2194–2202
Kennedey MW (2000) Immune response to Anisakis simplex and other ascarid nematodes. Allergy 55(Suppl 59):7–13
Kijewska A, Rokicki J, Sitko J, Wegrzyn G (2002) Ascaridoidea: a simple DNA assay for identification of 11 species infecting marine and freshwater fish, mammals and fish-eating birds. Exp Parasitol 101:35–39
Klimpel S, Rückert S (2005) Life cycle strategy of Hysterothylacium aduncum to become the most abundant anisakid fish nematode in the North Sea. Parasitol Res 97:141–149
Klimpel S, Palm HW, Rückert S, Piatkowski U (2004) The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol Res 94:1–9
Klimpel S, Kellermanns E, Palm HW, Moravec F (2007) Zoogeography of fish parasites of the pearlside (Maurolicus muelleri), with genetic evidence of Anisakis simplex (s.s.) from the Mid-Atlantic Ridge. Mar Biol 152:725–732
Klimpel S, Kellermanns E, Palm HW (2008) The role of pelagic swarm fish (Myctophidae: Teleostei) in the oceanic life cycle of Anisakis sibling species at the Mid-Atlantic Ridge, Central Atlantic. Parasitol Res 104:43–53
Klimpel S, Busch MW, Kuhn T, Rohde A, Palm HW (2010) The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar Ecol Prog Ser 403:1–11
Klöser H, Plötz J, Palm H, Bartsch A, Hubold G (1992) Adjustment of anisakid nematode life cycles to the high Antarctic food web as shown by Contracaecum radiatum and C. osculatum in the Weddell sea. Antarct Sci 4:171–178
Klyashtorin L (2001) Climate change and long-term fluctuations of commercial catches. The possibility of forecasting. FAO, Rome
Køie M (2001) Experimental infections of copepods and sticklebacks Gasterosteus aculeatus with small ensheathed and large third-stage larvae of Anisakis simplex (Nematoda, Ascaridoidea, Anisakidae). Parasitol Res 87:32–36
Køie M, Fagerholm HP (1995) The life cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitol Res 81:481–489
Køie M, Berland B, Burt MDB (1995) Development to third-stage larvae occurs in the eggs of Anisakis simplex and Pseudoterranova decipiens (Nematoda, Ascaridoidea, Anisakidae). Can J Fish Aquat Sci 52:134–139
Kuhn T (2010) Molecular studies on marine ascaridoid nematodes-Diploma thesis, Heinrich Heine University, Düsseldorf
Levsen A, Lunestad BT (2010) Anisakis simplex third stage larvae in Norwegian spring spawning herring (Clupea harengus L.), with emphasis on larval distribution in the flesh. Vet Parasitol 171(3-4):247–253. doi:10.1016/j.vetpar.2010.03.039
Li A, D’Amelio S, Paggi L, He F, Gasser RB, Lun Z, Abollo E, Turchetto M, Zhu X (2005) Genetic evidence for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) and the validity of Contracaecum septentrionale (Kreis, 1955) (Nematoda: Anisakidae). Parasitol Res 96:361–366
Lile NK (1998) Alimentary tract helminths of four pleuronectid flatfish in relation to host phylogeny and ecology. J Fish Biol 53:945–953
Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27:467–484
Marques JF, Cabral HN, Busi M, D’Amelio S (2006) Molecular identification of Anisakis species from Pleuronectiformes off the Portuguese coast. J Helminthol 80:47–51
Mattiucci S, Nascetti G (2006) Molecular systematics, phylogeny and ecology of anisakid nematodes of the genus Anisakis Dujardin, 1845: an update. Parasite 13:99–113
Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Adv Parasitol 66:47–148
Mattiucci S, Nascetti G, Cianchi R, Paggi L, Arduino P, Margolis L, Brattey J, Webb SC, D’Amelio S, Orecchia P, Bullini L (1997) Genetic and ecological data on the Anisakis simplex complex with evidence for a new species (Nematoda, Ascaridoidea, Anisakidae). J Parasitol 83:401–416
Mattiucci S, Paggi L, Nascetti G, Portes SC, Costa G, Di Beneditto AP, Ramos R, Argyrou M, Cianchi R, Bullini L (2002) Genetic markers in the study of Anisakis typica (Diesing, 1890): larval identification and genetic relationships with other species of Anisakis Dujardin, 1845 (Nematoda: Anisakidae). Syst Parasitol 51:159–170
Mattiucci S, Nascetti G, Dailey M, Webb SC, Barros N, Cianchi R, Bullini L (2005) Evidence for a new species of Anisakis Dujardin, 1845: morphological description and genetic relationships between congeners (Nematoda: Anisakidae). Syst Parasitol 61:157–171
Mattiucci S, Abaunza P, Damiano S, Garcia A, Santos MN, Nascetti G (2007) Distribution of Anisakis larvae identified by genetic markers and their use for stock characterization of demersal and pelagic fish from European waters: an update. J Helminthol 81:117–127
Mattiucci S, Paoletti M, Webb SC, Sardella N, Timi JT, Berland B, Nascetti G (2008a) Genetic relationships among species of Contracaecum Railliet and Henry, 1912 and Phocascaris Höst, 1932 (Nematoda: Anisakidae) from pinnipeds based on mitochondrial cox2 sequences, and congruence with allozyme data. Parasite 15:408–419
Mattiucci S, Paoletti M, Olivero-Verbel J, Baldiris R, Arroyo-Salgado B, Garbin L, Navone G, Nascetti G (2008b) Contracaecum bioccai n. sp. from the brown pelican Pelecanus occidentalis (L.) in Colombia (Nematoda: Anisakidae): morphology, molecular evidence and its genetic relationship with congeners from fish-eating birds. Syst Parasitol 69(2):101–121
Mattiucci S, Paoletti M, Webb SC (2009) Anisakis nascettii n.sp. (Neamtoda: Anisakidae) from beaked whales of the southern hemisphere: morphological description, genetic relationships between congeners and ecological data. Syst Parasitol 74:199–217
McClelland G (1990) Larval sealworm (Pseudoterranova decipiens) infections in benthic macrofauna. In: Bowen WD (ed) Population biology of sealworm (Pseudoterranova decipiens) in relation to its intermediate and seal hosts. Canadian Bulletin of Fisheries & Aquatic Sciences, Ottawa, pp 47–65
McClelland G (2002) The trouble with sealworms (Pseudoterranova decipiens species complex, Nematoda): a review. Parasitology 124:S183–S203
McClelland G (2005) Nematoda (roundworms). In: Rohde K (ed) Marine parasitology. CABI Publishing, Wallingford, pp 104–115
Meldal BHM, Debenham NJ, De Ley P, De Ley IT, Vanfleteren JR, Vierstraete AR, Bert W, Borgonie G, Moens T, Tyler PA, Austen AR, Blaxter ML, Rogers AD, Lambshead PJD (2007) An improved molecular phylogeny of the Nematoda with special emphases on marine taxa. Mol Phylogenet Evol 42:622–636
Mitchell GF (1991) Co-evolution of parasites and adaptive immune response. Immunol Today 12:A2–A5
Nadler SA, D’Amelio S, Dailey MD, Paggi L, Siu S, Sakanari JA (2005) Molecular phylogenetics and diagnosis of Anisakis, Pseudoterranova, and Contracaecum from Northern Pacific marine mammals. J Parasitol 91:1413–1429
Palm HW (1999) Ecology of Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Anisakidae) from Antarctic waters. Parasitol Res 85:638–646
Palm HW (2004) The Trypanorhyncha diesing, 1863. PKSPL-IPB Press, Bogor
Palm HW (2010) Fish parasites as biological indicators in a changing world: Can we monitor environmental impact and global change? Springer, Berlin
Palm HW, Klimpel S (2007) Evolution of parasitic life in the ocean. Trends Parasitol 23:10–12
Palm HW, Klimpel S (2008) Metazoan fish parasites of Macrourus berglax Lacepéde, 1801 and other macrourids of the North Atlantic: invasion of the deep sea from the continental shelf. Deep Sea Res Pt II 55:236–242
Palm HW, Andersen K, Klöser H, Plötz J (1994) Occurrence of Pseudoterranova decipiens (Nematoda) in fish from the southeastern Weddell Sea (Antarctic). Polar Biol 14:539–544
Palm HW, Reimann N, Spindler M, Plötz J (1998) The role of the rock cod Notothenia coriiceps in the life cycle of Antarctic parasites. Polar Biol 19:399–406
Palm HW, Klimpel S, Walter T (2007) Demersal fish parasite fauna around the South Shetland Islands: high species richness and low host specificity in deep Antarctic waters. Polar Biol 30:1513–1522
Palm HW, Damriyasa IM, Linda OIBM (2008) Molecular genotyping of Anisakis Dujardin, 1845 (Nematoda: Ascaridoidea: Anisakidae) larvae from marine fish of Balinese and Javanese waters, Indonesia. Helminthologia 45:3–12
Parkinson J, Mitreva M, Whitton C, Thomson M, Daub J, Martin J, Schmid R, Hall N, Barrell B, Waterston RH, McCarter JP, Blaxter ML (2004) A transcriptomic analysis of the phylum Nematoda. Nat Genet 36:1259–1267
Petersen F, Palm HW, Möller H, Cuzi MA (1993) Flesh parasites of fish from central Philippine waters. Dis Aquat Org 15:81–86
Plath F, Holle A, Zendeh D, Möller FW, Barten M, Reisinger EC, Liebe S (2001) Anisakiasis des Magens – ein Fallbericht aus Deutschland. Z Gastroenterol 39:177–180
Pontes T, D’Amelio S, Costa G, Paggi L (2005) Molecular characterization of larval anisakid nematodes from marine fishes of Madeira by a PCR-based approach, with evidence for a new species. J Parasitol 91:1430–1434
Rahmstorf S, Cazenave A, Church JA, Hansen JE, Keeling RF, Parker DE, Somerville RCJ (2007) Recent climate observations compared to projections. Science 316:709
Rohde K (1984) Diseases caused by Metazoans: helminths. In: Kinn O (ed) Diseases of marine animals, IV, Part 1st edn. Biologische Anstalt Helgoland, Hamburg, pp 193–319
Sakanari JA, McKerrow JH (1989) Anisakiasis. Clin Microbiol Rev 2:278–284
Shamshi S, Norman R, Gasser R, Beveridge I (2009a) Redescription and genetic characterization of selected Contracaecum spp. (Nematoda: Anisakidae) from various hosts in Australia. Parasitol Res 104:1507–1525
Shamshi S, Norman R, Gasser R, Beveridge I (2009b) Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) Nematoda: Anisakidae) in Australia. Parasitol Res 105:829–838
Smith JW (1999) Ascaridoid Nematodes and pathology of the alimentary tract and its associated organs in vertebrates, including man: a literature review. Helminthol Abstr 68:49–96
Steele JH (1998) Regime shifts in marine ecosystems. Ecol Appl 8:33–36
Steele JH (2004) Regime shifts in the ocean: reconciling observations and theory. Prog Ocean 60:135–141
Szostakowska B, Myjak P, Kur J (2002) Identification of aniskaid nematodes from the Southern Baltic Sea using PCR-based methods. Mol Cell Probes 16:111–118
Taylor MD, LeGoff L, Harris A, Malone E, Allen JE, Maizels RM (2005) Removal of regulatory T cell activity reverses hyporesponsiveness and leads to filarial parasite clearance in vivo. J Immunol 174:4924–4933
Torres P, Sierpe V, Schlatter R (1983) Occurrence of Contracaecum rudolphii in new hosts in Chile. Z Parasitenkd 69:397–399
Valentini A, Mattiucci S, Bondanelli P, Webb SC, Mignucci-Giannone A, Colom-Llavina MM, Nascetti G (2006) Genetic relationships among Anisakis species (Nematoda: Anisakidae) inferred from mitochondrial cox2 sequences, and comparison with allozyme data. J Parasitol 92:156–166
Van Thiel PH (1962) Anisakiasis. Parasitology 52:16–17
Wijova M, Moravec F, Horak A, Lukes J (2006) Evolutionary relationships of Spirurina (Nematoda: Chromadorea: Rhabditida) with special emphasis on dracunculoid nematodes inferred from SSU rRNA gene sequences. Int J Parasitol 36:1067–1075
Williams H, Jones A (1994) Parasitic worms of fish. Taylor & Francis, London
Zhu XQ, Gasser RB, Jacobs DE, Hung GC, Chilton NB (2000a) Relationships among some ascaridoid nematodes based on ribosomal DNA sequence data. Parasitol Res 86:738–744
Zhu XQ, D’Amelio S, Paggi L, Gasser RB (2000b) Assessing sequence variation in the internal transcribed spacers of ribosomal DNA within and among members of the Contracaecum osculatum complex (Nematoda: Ascaridoidea: Anisakidae). Parasitol Res 86:677–683
Zhu X, D’Amelio S, Hu M, Paggi L, Gasser RB (2001) Electrophoretic detection of population variation within Contracaecum ogmorhini (Nematoda: Ascaridoidea: Anisakidae). Electrophoresis 22:1930–1934
Zhu XQ, D’Amelio S, Palm HW, Paggi L, George-Nascimento M, Gasser RB (2002) SSCP-based identification of members within the Pseudoterranova decipiens complex (Nematoda: Ascaridoidea: Anisakidae) using genetic markers in the internal transcribed spacers of ribosomal DNA. Parasitology 124:615–623
Acknowledgements
The present study was financially supported by the German Research Council (DFG KL 2087/1-1, 1–2), by the Research and Innovation funds of the Heinrich-Heine-University Düsseldorf, and the Gesellschaft für Ichthyologie e.V. (GiF). Dr. R. Bray (The Natural History Museum London) provided helpful comments on an earlier version of the manuscript.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Klimpel, S., Palm, H.W. (2011). Anisakid Nematode (Ascaridoidea) Life Cycles and Distribution: Increasing Zoonotic Potential in the Time of Climate Change?. In: Mehlhorn, H. (eds) Progress in Parasitology. Parasitology Research Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21396-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-642-21396-0_11
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-21395-3
Online ISBN: 978-3-642-21396-0
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)