Skip to main content

An Asymmetric Criterion for Cluster Validation

  • Chapter
Developing Concepts in Applied Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 363))

Abstract

Many stability measures to validate a cluster have been proposed such as Normalized Mutual Information. The drawback of the common approach is discussed in this paper and then a new asymmetric criterion is proposed to assess the association between a cluster and a partition which is called Alizadeh-Parvin-Moshki-Minaei criterion, APMM. The APMM criterion compensates the drawback of the common Normalized Mutual Information (NMI) measure. Also, a clustering ensemble method is proposed which is based on aggregating a subset of primary clusters. This method uses the Average APMM as fitness measure to select a number of clusters. The clusters which satisfy a predefined threshold of the mentioned measure are selected to participate in the clustering ensemble. To combine the chosen clusters, a co-association based consensus function is employed. Since the Evidence Accumulation Clustering, EAC, method cannot derive the co-association matrix from a subset of clusters, a new EAC based method which is called Extended EAC, EEAC, is employed to construct the co-association matrix from the chosen subset of clusters. The empirical studies show that the proposed method outperforms other ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ayad, H.G., Kamel, M.S.: Cumulative Voting Consensus Method for Partitions with a Variable Number of Clusters. IEEE Trans. on Pattern Analysis and Machine Intelligence 30(1), 160–173 (2008)

    Article  Google Scholar 

  2. Baumgartner, R., Somorjai, R., Summers, R., Richter, W., Ryner, L., Jarmasz, M.: Resampling as a Cluster Validation Technique in fMRI. Journal of Magnetic Resonance Imaging 11, 228–231 (2000)

    Article  Google Scholar 

  3. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. Pasific Symposium on Biocomputing 7, 6–17 (2002)

    Google Scholar 

  4. Brandsma, T., Buishand, T.A.: Simulation of extreme precipitation in the Rhine basin by nearest-neighbour resampling. Hydrology and Earth System Sciences 2, 195–209 (1998)

    Article  Google Scholar 

  5. Breckenridge, J.: Replicating cluster analysis: Method, consistency and validity. Multivariate Behavioral Research (1989)

    Google Scholar 

  6. Das, A.K., Sil, J.: Cluster Validation using Splitting and Merging Technique. In: Int. Conf. on Computational Intelligence and Multimedia Applications, ICCIMA (2007)

    Google Scholar 

  7. Davison, A.C., Hinkley, D.V., Young, G.A.: Recent developments in bootstrap methodology. Statistical Science 18, 141–157 (2003)

    Article  MathSciNet  Google Scholar 

  8. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, Chichester (2001)

    MATH  Google Scholar 

  9. Estivill-Castro, V., Yang, J.: Cluster Validity Using Support Vector Machines. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2003. LNCS, vol. 2737, pp. 244–256. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Faceli, K., Marcilio, C.P., Souto, D.: Multi-objective Clustering Ensemble. In: Proceedings of the Sixth International Conference on Hybrid Intelligent Systems (2006)

    Google Scholar 

  11. Fern, X.Z., Lin, W.: Cluster Ensemble Selection. In: SIAM International Conference on Data Mining (2008)

    Google Scholar 

  12. Fred, A., Jain, A.K.: Combining Multiple Clusterings Using Evidence Accumulation. IEEE Trans. on Pattern Analysis and Machine Intelligence 27(6), 835–850 (2005)

    Article  Google Scholar 

  13. Fred, A., Jain, A.K.: Data Clustering Using Evidence Accumulation. In: Intl. Conf. on Pattern Recognition, ICPR 2002, Quebec City, pp. 276–280 (2002)

    Google Scholar 

  14. Fred, A., Jain, A.K.: Learning Pairwise Similarity for Data Clustering. In: Int. Conf. on Pattern Recognition (2006)

    Google Scholar 

  15. Fred, A., Lourenco, A.: Cluster Ensemble Methods: from Single Clusterings to Combined Solutions. SCI, vol. 126, pp. 3–30 (2008)

    Google Scholar 

  16. Fridlyand, J., Dudoit, S.: Applications of resampling methods to estimate the number of clusters and to improve the accuracy of a clustering method. Stat. Berkeley Tech. Report No. 600 (2001)

    Google Scholar 

  17. Inokuchi, R., Nakamura, T., Miyamoto, S.: Kernelized Cluster Validity Measures and Application to Evaluation of Different Clustering Algorithms. In: IEEE Int. Conf. on Fuzzy Systems, Canada, July 16-21 (2006)

    Google Scholar 

  18. Law, M.H.C., Topchy, A.P., Jain, A.K.: Multiobjective data clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 424–430 (2004)

    Google Scholar 

  19. Lange, T., Roth, V., Braun, M.L., Buhmann, J.M.: Stability-based validation of clustering solutions. Neural Computation 16(6), 1299–1323 (2004)

    Article  MATH  Google Scholar 

  20. Minaei-Bidgoli, B., Topchy, A., Punch, W.F.: Ensembles of Partitions via Data Resampling. In: Intl. Conf. on Information Technology, ITCC 2004, Las Vegas (2004)

    Google Scholar 

  21. Möller, U., Radke, D.: Performance of data resampling methods based on clustering. Intelligent Data Analysis 10(2) (2006)

    Google Scholar 

  22. Rakhlin, A., Caponnetto, A.: Stability of k-means clustering. In: Advances in Neural Information Processing Systems, vol. 19. MIT Press, Cambridge (2007)

    Google Scholar 

  23. Roth, V., Lange, T.: Feature Selection in Clustering Problems. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  24. Roth, V., Lange, T., Braun, M., Buhmann, J.: A Resampling Approach to Cluster Validation. In: Intl. Conf. on Computational Statistics, COMPSTAT (2002)

    Google Scholar 

  25. Strehl, A., Ghosh, J.: Cluster ensembles - a knowledge reuse framework for combining multiple partitions. Journal of Machine Learning Research 3, 583–617 (2002)

    Article  MathSciNet  Google Scholar 

  26. Xie, X.L., Beni, G.: A Validity measure for Fuzzy Clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(4), 841–846 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alizadeh, H., Minaei, B., Parvin, H., Moshki, M. (2011). An Asymmetric Criterion for Cluster Validation. In: Mehrotra, K.G., Mohan, C., Oh, J.C., Varshney, P.K., Ali, M. (eds) Developing Concepts in Applied Intelligence. Studies in Computational Intelligence, vol 363. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21332-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21332-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21331-1

  • Online ISBN: 978-3-642-21332-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics