Skip to main content

Ribonucleases as Models for Understanding Protein Folding

  • Chapter
  • First Online:

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC))

Abstract

This is a summary of the background, and some of the experimental research in my laboratory, on the physical chemical properties of proteins. The experimental studies were carried out to obtain information about the three-dimensional structure and folding/unfolding pathways of bovine pancreatic ribonuclease A and three of its structural homologs, ribonuclease B, frog onconase, and bovine angiogenin.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acharya KR, Shapiro R, Riordan JF, Vallee BL (1995) Crystal structure of bovine angiogenin at 1.5-A resolution. Proc Nat Acad Sci USA 92:2949–2953

    PubMed  CAS  Google Scholar 

  • Altmann KH, Scheraga HA (1990) Local structure in ribonuclease A. Effect of amino acid substitutions on the preferential formation of the native disulfide loop in synthetic peptides corresponding to residues Cys58–Cys72 of bovine pancreatic ribonuclease A. J Am Chem Soc 112:4926–4931

    CAS  Google Scholar 

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181:223–230

    PubMed  CAS  Google Scholar 

  • Bhat R, Wedemeyer WJ, Scheraga HA (2003) Proline isomerization in bovine pancreatic ribonuclease A. 2. Folding conditions. Biochemistry 42:5722–5728

    PubMed  CAS  Google Scholar 

  • Brandts JF, Halvorson HR, Brennan M (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14:4953–4963

    PubMed  CAS  Google Scholar 

  • Bruice TW, Kenyon GL (1982) Novel alkyl alkanethiolsulfonate sulfhydryl reagents. Modification of derivatives of L-cysteine. J Protein Chem 1:47–58

    CAS  Google Scholar 

  • Burgess AW, Scheraga HA (1975) A hypothesis for the pathway of the thermally–induced unfolding of bovine pancreatic ribonuclease. J Theor Biol 53:403–420

    PubMed  CAS  Google Scholar 

  • Burgess AW, Weinstein LI, Gabel D, Scheraga HA (1975) Immobilized carboxypeptidase A as a probe for studying the thermally induced unfolding of bovine pancreatic ribonuclease. Biochemistry 14:197–200

    PubMed  CAS  Google Scholar 

  • Canfield RE (1963) The amino acid sequence of egg white lysozyme. J Biol Chem 238:2698–2707

    PubMed  CAS  Google Scholar 

  • Carty RP, Pincus MR, Scheraga HA (2002) Interactions that favor the native over the non-native disulfide bond among residues 58–72 in the oxidative folding of bovine pancreatic ribonuclease A. Biochemistry 41:14815–14819

    PubMed  CAS  Google Scholar 

  • Cleland WW (1964) Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3:480–482

    PubMed  CAS  Google Scholar 

  • Creighton TE (1977) Kinetics of refolding of reduced ribonuclease. J Mol Biol 113:329–341

    PubMed  CAS  Google Scholar 

  • Creighton TE (1979) Intermediates in the refolding of reduced ribonuclease A. J Mol Biol 129:411–431

    PubMed  CAS  Google Scholar 

  • Creighton TE (1986) Disulfide bonds as probes of protein folding pathways. Methods Enzymol 131:83–1061

    PubMed  CAS  Google Scholar 

  • Creighton TE, Hillson DA, Freedman RB (1980) Catalysis by protein-disulphide isomerase of the unfolding and refolding of proteins with disulphide bonds. J Mol Biol 142:43–62

    PubMed  CAS  Google Scholar 

  • Dodge RW, Scheraga HA (1996) Folding and unfolding kinetics of the proline-to-alanine mutants of bovine pancreatic ribonuclease A. Biochemistry 35:1548–1559

    PubMed  CAS  Google Scholar 

  • Dodge RW, Laity JH, Rothwarf DM, Shimotakahara S, Scheraga HA (1994) Folding pathway of guanidine-denatured disulfide-intact wildtype and mutant bovine pancreatic ribonuclease A. J Protein Chem 13:409–421

    PubMed  CAS  Google Scholar 

  • Donovan JW, Laskowski M Jr, Scheraga HA (1958) Influence of ionization of carboxyl groups on the ultraviolet absorption spectrum of lysozyme. Biochim Biophys Acta 29:455–456

    PubMed  CAS  Google Scholar 

  • Dyson HJ, Rance N, Houghton RA, Lerner RA, Wright PE (1988) Folding of immunogenic fragments of proteins in water solution. 1. Sequence requirements for the formation of a reverse turn. J Mol Biol 201:161–200

    PubMed  CAS  Google Scholar 

  • Fu D, Chen L, O’Neill RA (1994) A detailed structural characterization of ribonuclease B oligosaccharides by 1H NMR spectroscopy and mass spectrometry. Carbohydr Res 261:173–186

    PubMed  CAS  Google Scholar 

  • Gahl RF, Scheraga HA (2009) Oxidative folding pathway of onconase, a ribonuclease homologue: insight into oxidative folding mechanisms from a study of two homologues. Biochemistry 48:2740–2751

    PubMed  CAS  Google Scholar 

  • Gahl RF, Narayan M, Xu G, Scheraga HA (2008) Dissimilarity in the oxidative folding of onconase and ribonuclease A, two structural homologues. Protein Eng Des Sel 21:223–231

    PubMed  CAS  Google Scholar 

  • Garel JR, Nall BT, Baldwin RL (1976) Guandine-unfolded state of ribonuclease A contains both fast- and slow-folding species. Proc Natl Acad Sci USA 73:1853–1857

    PubMed  CAS  Google Scholar 

  • Gindulyte A, Bashan A, Agmon I, Massa L, Yonath A, Karle J (2006) The transition state for formation of the peptide bond in ribosome. Proc Natl Acad Sci USA 130:13327–13332

    Google Scholar 

  • Grafl R, Lang K, Vogal H, Schmid FX (1987) The mechanism of folding of pancreatic ribonucleases is independent of the presence of covalently linked carbohydrate. J Biol Chem 262:10624–10629

    PubMed  CAS  Google Scholar 

  • Griffith JH, Scheraga HA (2004) Statistical thermodynamics of aqueous solutions. I. Water structure, solutions with non-polar solutes, and hydrophobic interactions. J Mol Struct 682:97–113

    CAS  Google Scholar 

  • Haas E, McWherter CA, Scheraga HA (1988) Conformational unfolding in the N–terminal region of ribonuclease A detected by nonradiative energy transfer. Distribution of interresidue distances in the native, denatured and reduced-denatured states. Biopolymers 27:1–21

    PubMed  CAS  Google Scholar 

  • Harrington WF, Schellman JA (1956) Evidence for the instability of hydrogen-bonded peptide structures in water, based on studies of ribonuclease and oxidized ribonuclease. C R Trav Lab Carlsberg Chim 30:21–43

    PubMed  CAS  Google Scholar 

  • Heinrikson L (1966) On the alkylation of amino acid residues at the active site of ribonuclease. J Biol Chem 241:1393–1405

    PubMed  CAS  Google Scholar 

  • Hermans J Jr, Scheraga HA (1961a) Structural studies of ribonuclease. V. Reversible change of configuration. J Am Chem Soc 83:3283–3292

    Google Scholar 

  • Hermans J Jr, Scheraga HA (1961b) Structural studies of ribonuclease. VI. Abnormal ionizable groups. J Am Chem Soc 83:3293–3300

    CAS  Google Scholar 

  • Hirs CHW, Moore S, Stein WH (1960) The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol Chem 235:633–647

    PubMed  CAS  Google Scholar 

  • Houry WA, Scheraga HA (1996a) The nature of the unfolded state of ribonuclease A: effect of cis-trans X-Pro peptide bond isomerization. Biochemistry 35:11719–11733

    PubMed  CAS  Google Scholar 

  • Houry WA, Scheraga HA (1996b) Structure of a hydrophobically collapsed intermediate on the conformational folding pathway of ribonuclease A probed by hydrogen-deuterium exchange. Biochemistry 35:11734–11746

    PubMed  CAS  Google Scholar 

  • Houry WA, Rothwarf DM, Scheraga HA (1994) A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways. Biochemistry 33:2516–2530

    PubMed  CAS  Google Scholar 

  • Houry WA, Rothwarf DM, Scheraga HA (1995) The nature of the initial step in the conformational folding of disulfide-intact ribonuclease A. Nat Struct Biol 2:495–503

    PubMed  CAS  Google Scholar 

  • Iwaoka M, Juminaga D, Scheraga HA (1998) Regeneration of three-disulfide mutants of bovine pancreatic ribonuclease A missing the 65–72 disulfide bond: characterization of a minor folding pathway of ribonuclease A and kinetic roles of Cys65 and Cys72. Biochemistry 37:4490–4501

    PubMed  CAS  Google Scholar 

  • Jang SH, Kang DK, Chang SI, Scheraga HA, Shin HC (2004) High level production of bovine angiogenin in E. coli by an efficient refolding procedure. Biotechnol Lett 26:1501–1504

    PubMed  CAS  Google Scholar 

  • Jang SH, Song HD, Kang DK, Chang SI, Kim MK, Cho KW, Scheraga HA, Shin HC (2009) Role of the surface loop on the structure and biological activity of angiogenin. BMB Rep 42:829–833

    PubMed  CAS  Google Scholar 

  • Juminaga D, Wedemeyer WJ, Garduño-Júarez R, McDonald MA, Scheraga HA (1997) Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants. Biochemistry 36:10131–10145

    PubMed  CAS  Google Scholar 

  • Juminaga D, Wedemeyer WJ, Scheraga HA (1998) Proline isomerization in bovine pancreatic ribonuclease A. I. Unfolding conditions. Biochemistry 37:11614–11620

    PubMed  CAS  Google Scholar 

  • Kim PS, Baldwin RL (1982) Specific intermediates in the folding reactions of small proteins and the mechanism of protein folding. Annu Rev Biochem 51:459–489

    PubMed  CAS  Google Scholar 

  • Konishi Y, Scheraga HA (1980a) Regeneration of ribonuclease A from the reduced protein. 1. Conformational analysis of the intermediates by measurements of enzymatic activity, optical density and optical rotation. Biochemistry 19:1308–1316

    PubMed  CAS  Google Scholar 

  • Konishi Y, Scheraga HA (1980b) Regeneration of ribonuclease A from the reduced protein. 2. Conformational analysis of the intermediates by nuclear magnetic resonance spectroscopy. Biochemistry 19:1316–1322

    PubMed  CAS  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA (1981) Regeneration of ribonuclease A from the reduced protein. Isolation and identification of intermediates, and equilibrium treatment. Biochemistry 20:3945–3955

    PubMed  CAS  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA (1982a) Regeneration of ribonuclease A from the reduced protein. Rate-limiting steps. Biochemistry 21:4734–4740

    PubMed  CAS  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA (1982b) Regeneration of ribonuclease A from the reduced protein. Energetic analysis. Biochemistry 21:4741–4748

    PubMed  CAS  Google Scholar 

  • Konishi Y, Ooi T, Scheraga HA (1982c) Regeneration of RNase A from the reduced protein: models of regeneration pathways. Proc Natl Acad Sci USA 79:5734–5738

    PubMed  CAS  Google Scholar 

  • Kresheck GC, Scheraga HA (1966) Structural studies of ribonuclease. XXV. Enthalpy changes accompanying acid denaturation. J Am Chem Soc 88:4588–4591

    PubMed  CAS  Google Scholar 

  • Laity JH, Lester CC, Shimotakahara S, Zimmerman DE, Montelione GT, Scheraga HA (1997) Structural characterization of an analog of the major rate-determining disulfide folding intermediate of bovine pancreatic ribonuclease A. Biochemistry 36:12683–12699

    PubMed  CAS  Google Scholar 

  • Laskowski M Jr, Scheraga HA (1954) Thermodynamic considerations of protein reactions. I. Modified reactivity of polar groups. J Am Chem Soc 76:6305–6319

    CAS  Google Scholar 

  • Laskowski M Jr, Scheraga HA (1956) Thermodynamic considerations of protein reactions. II. Modified reactivity of primary valence bonds. J Am Chem Soc 78:5793–5798

    CAS  Google Scholar 

  • Laskowski M Jr, Widom JM, McFadden ML, Scheraga HA (1956) Differential ultraviolet spectra of insulin. Biochim Biophys Acta 19:581–582

    PubMed  CAS  Google Scholar 

  • Leland PA, Raines RT (2001) Cancer chemotherapy – ribonucleases to the rescue. Chem Biol 8:405–413

    PubMed  CAS  Google Scholar 

  • Lester CC, Xu X, Laity JH, Shimotakahara S, Scheraga HA (1997) Regeneration studies of an analog of ribonuclease A missing disulfide bonds 65–72 and 40–95. Biochemistry 36:13068–13076

    PubMed  CAS  Google Scholar 

  • Li LK, Riehm JP, Scheraga HA (1966) Structural studies of ribonuclease. XXIII. Pairing of the tyrosyl and carboxyl groups. Biochemistry 5:2043–2048

    PubMed  CAS  Google Scholar 

  • Li YJ, Rothwarf DM, Scheraga HA (1995) Mechanism of reductive protein unfolding. Nat Struct Biol 2:489–494

    PubMed  CAS  Google Scholar 

  • Lin LN, Brandts JF (1983) Mechanism for the unfolding and refolding of ribonuclease A. Kinetic studies utilizing spectroscopic methods. Biochemistry 22:564–573

    PubMed  CAS  Google Scholar 

  • Matheson RR Jr, Scheraga HA (1979) Steps in the pathway of the thermal unfolding of ribonuclease A. A nonspecific surface-labeling study. Biochemistry 12:2437–2445

    Google Scholar 

  • Matheson RR Jr, Dugas H, Scheraga HA (1977a) Electron paramagnetic resonance spectroscopy as a monitor of the pathway of the thermal unfolding of ribonuclease A. Biochem Biophys Res Commun 74:869–876

    PubMed  CAS  Google Scholar 

  • Matheson RR Jr, Van Wart HE, Burgess AW, Weinstein LI, Scheraga HA (1977b) Study of protein topography with flash–photolytically–generated non-specific surface–labeling reagents: surface labeling of ribonuclease A. Biochemistry 16:396–403

    PubMed  CAS  Google Scholar 

  • McWherter CA, Haas E, Leed AR, Scheraga HA (1986) Conformational unfolding in the N–terminal region of ribonuclease A detected by nonradiative energy transfer. Biochemistry 25:1951–1963

    PubMed  CAS  Google Scholar 

  • Milburn PJ, Scheraga HA (1988) Local interactions favor the native 8-residue disulfide loop in the oxidation of a fragment corresponding to the sequence Ser-50-Met-79 derived from bovine pancreatic ribonuclease A. J Protein Chem 7:377–398

    PubMed  CAS  Google Scholar 

  • Montelione GT, Scheraga HA (1989) Formation of local structures in protein folding. Acc Chem Res 22:70–76

    CAS  Google Scholar 

  • Mosimann SC, Ardelt W, James NM (1994) Refined 1.7 Å X-ray crystallographic structure of P-30 protein, an amphibian ribonuclease with anti-tumor activity. J Mol Biol 236:1141–1153

    PubMed  CAS  Google Scholar 

  • Narayan M, Xu G, Ripoll DR, Zhai H, Breuker K, Wanjalla C, Leung HJ, Navon A, Welker E, McLafferty FW, Scheraga HA (2004) Dissimilarity in the reductive unfolding pathways of two ribonuclease homologues. J Mol Biol 338:795–809

    PubMed  CAS  Google Scholar 

  • Navon A, Ittah V, Laity JH, Scheraga HA, Haas E, Gussakovsky EE (2001a) Local and long-range interactions in the thermal unfolding transition of bovine pancreatic ribonuclease A. Biochemistry 40:93–104

    PubMed  CAS  Google Scholar 

  • Navon A, Ittah V, Landsman P, Scheraga HA, Haas E (2001b) Distributions of intramolecular distances in the reduced and denatured states of bovine pancreatic ribonuclease A. Folding initiation structures in the C-terminal portions of the reduced protein. Biochemistry 40:105–118

    PubMed  CAS  Google Scholar 

  • Navon A, Ittah V, Scheraga HA, Haas E (2002) Formation of the hydrophobic core of ribonuclease A through sequential coordinated conformational transitions. Biochemistry 41:14225–14231

    PubMed  CAS  Google Scholar 

  • Némethy G, Scheraga HA (1962) The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J Phys Chem 66:1773–1789

    Google Scholar 

  • Némethy G, Scheraga HA (1965) Theoretical determination of sterically allowed conformations of a polypeptide chain by a computer method. Biopolymers 3:155–184

    Google Scholar 

  • Ooi T, Scheraga HA (1964a) Structural studies of ribonuclease. XII. Enzymic hydrolysis of active tryptic modifications of ribonuclease. Biochemistry 3:641–647

    PubMed  CAS  Google Scholar 

  • Ooi T, Scheraga HA (1964b) Structural studies of ribonuclease. XIII. Physicochemical properties of tryptic modifications of ribonuclease. Biochemistry 3:648–652

    PubMed  CAS  Google Scholar 

  • Ooi T, Rupley JA, Scheraga HA (1963) Structural studies of ribonuclease. VIII. Tryptic hydrolysis of ribonuclease A at elevated temperature. Biochemistry 2:432–437

    PubMed  CAS  Google Scholar 

  • Pearson MA, Karplus PA, Dodge RW, Laity JH, Scheraga HA (1998) Crystal structures of two mutants that have implications for the folding of bovine pancreatic ribonuclease A. Protein Sci 7:1255–1258

    PubMed  CAS  Google Scholar 

  • Pradeep L, Shin HC, Scheraga HA (2006) Correlation of folding kinetics with the number and isomerization states of prolines in three homologous proteins of the RNase family. FEBS Lett 580:5029–5032

    PubMed  CAS  Google Scholar 

  • Pradeep L, Kurinov I, Ealick SE, Scheraga HA (2007) Implementation of a k/k0 method to identify long-range structure in transition states during conformational folding/unfolding of proteins. Structure 15:1178–1189

    PubMed  CAS  Google Scholar 

  • Raleigh DP, Evans PA, Pitkeathly M, Dobson CM (1992) A peptide model for proline isomerism in the unfolded state of staphylococcal nuclease. J Mol Biol 228:338–342

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1991) Regeneration and reduction of native bovine pancreatic ribonuclease A with oxidized and reduced dithiothreitol. J Am Chem Soc 113:6293–6294

    CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1992) Equilibrium and kinetic constants for the thiol-disulfide interchange reaction between glutathione and dithiothreitol. Proc Natl Acad Sci USA 89:7944–7948

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1993a) Regeneration of bovine pancreatic ribonuclease A. 1. Steady-state distribution. Biochemistry 32:2671–2679

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1993b) Regeneration of bovine pancreatic ribonuclease A. 2. Kinetics of regeneration. Biochemistry 32:2680–2689

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1993c) Regeneration of bovine pancreatic ribonuclease A. 3. Dependence on the nature of the redox reagent. Biochemistry 32:2690–2697, Erratum: ibid., 32:7064 (1993)

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Scheraga HA (1993d) Regeneration of bovine pancreatic ribonuclease A. 4. Temperature dependence of the regeneration rate. Biochemistry 32:2698–2703

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Li YJ, Scheraga HA (1998a) Regeneration of bovine pancreatic ribonuclease A. Identification of two nativelike three-disulfide intermediates involved in separate pathways. Biochemistry 37:3760–3766

    PubMed  CAS  Google Scholar 

  • Rothwarf DM, Li YJ, Scheraga HA (1998b) Regeneration of bovine pancreatic ribonuclease A. Detailed kinetic analysis of two independent folding pathways. Biochemistry 37:3767–3776

    PubMed  CAS  Google Scholar 

  • Rudd PM, Joao HC, Coghill E, Fiten P, Saunders MR, Opdenakker G, Dwek RA (1994) Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17–22

    PubMed  CAS  Google Scholar 

  • Rupley JA, Scheraga HA (1960) Digestion of ribonuclease A with chymotrypsin and trypsin at high temperatures. Biochim Biophys Acta 44:191–193

    PubMed  CAS  Google Scholar 

  • Rupley JA, Scheraga HA (1963) Structural studies of ribonuclease. VII. Chymotryptic hydrolysis of ribonuclease A at elevated temperatures. Biochemistry 2:421–431

    PubMed  CAS  Google Scholar 

  • Ryle AP, Sanger F, Smith LF, Kitai R (1955) The disulphide bonds of insulin. Biochem J 60:541–556

    PubMed  CAS  Google Scholar 

  • Sanger F (1952) The arrangement of amino acids in proteins. Adv Protein Chem 7:1–66

    PubMed  CAS  Google Scholar 

  • Scheraga HA (1957) Tyrosyl–carboxylate ion hydrogen bonding in ribonuclease. Biochim Biophys Acta 23:196–197

    PubMed  CAS  Google Scholar 

  • Scheraga HA (1967) Structural studies of pancreatic ribonuclease. Fed Proc 26:1380–1387

    PubMed  CAS  Google Scholar 

  • Scheraga HA (1968) Calculations of conformations of polypeptides. Adv Phys Org Chem 6:103–184

    CAS  Google Scholar 

  • Scheraga HA (2008) From helix-coil transitions to protein folding. Biopolymers 89:479–485 (2008)

    PubMed  CAS  Google Scholar 

  • Scheraga HA (2011) Respice, adspice, and prospice. Annu Rev Biophys 40:1–39

    PubMed  CAS  Google Scholar 

  • Scheraga HA, Konishi Y, Ooi T (1984) Multiple pathways for regenerating ribonuclease A. Adv Biophys 18:21–41

    PubMed  CAS  Google Scholar 

  • Scheraga HA, Konishi Y, Rothwarf DM, Mui PW (1987) Toward an understanding of the folding of ribonuclease A. Proc Natl Acad Sci USA 84:5740–5744

    PubMed  CAS  Google Scholar 

  • Scheraga HA, Pillardy J, Liwo A, Lee J, Czaplewski C, Ripoll DR, Wedemeyer WJ, Arnautova YA (2002) Evolution of physics-based methodology for exploring the conformational energy landscape of proteins. J Comput Chem 23:28–34

    PubMed  CAS  Google Scholar 

  • Scheraga HA, Liwo A, Ołdziej S, Czaplewski C, Pillardy J, Ripoll DR, Vila JA, Kazmierkiewicz R, Saunders JA, Arnautova YA, Jagielski A, Chinchio M, Nanias M (2004) The protein folding problem: global optimization of force fields. Front Biosci 9:3296–3323

    PubMed  CAS  Google Scholar 

  • Schmid FX (1986) Fast-folding and slow-folding forms of unfolded proteins. Meth Enzymol 131:70–82

    PubMed  CAS  Google Scholar 

  • Scott RA, Scheraga HA (1963) Structural studies of ribonuclease. XI. Kinetics of denaturation. J Am Chem Soc 85:3866–3873

    CAS  Google Scholar 

  • Sendak RA, Rothwarf DM, Wedemeyer WJ, Houry WA, Scheraga HA (1996) Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A. Biochemistry 35:12978–12992

    PubMed  CAS  Google Scholar 

  • Shimotakahara S, Rios CB, Laity JH, Zimmerman DE, Scheraga HA, Montelione GT (1997) NMR structural analysis of an analog of an intermediate formed in the rate-determining step of one pathway in the oxidative folding of bovine pancreatic ribonuclease A: automated analysis of 1H, 13C, and 15N resonance assignments for wild-type and [C65S, C72S] mutant forms. Biochemistry 36:6915–6929

    PubMed  CAS  Google Scholar 

  • Shugar D (1952) The ultraviolet absorption spectrum of ribonuclease. Biochem J 52:142–149

    PubMed  CAS  Google Scholar 

  • Talluri S, Falcomer CM, Scheraga HA (1993) Energetic and structural basis for the preferential formation of the native disulfide loop involving Cys-65 and Cys-72 in synthetic peptide fragments derived from the sequence of ribonuclease A. J Am Chem Soc 115:3041–3047

    CAS  Google Scholar 

  • Talluri S, Rothwarf DM, Scheraga HA (1994) Structural characterization of a three-disulfide intermediate of ribonuclease A involved in both the folding and unfolding pathways. Biochemistry 33:10437–10449

    PubMed  CAS  Google Scholar 

  • Tanford C, Hauenstein JD, Rands DG (1955) Phenolic hydroxyl ionization in proteins. II. Ribonuclease. J Am Chem Soc 77:6409–6413

    CAS  Google Scholar 

  • Volles MJ, Xu X, Scheraga HA (1999) Distribution of disulfide bonds in the two-disulfide intermediates in the regeneration of bovine pancreatic ribonuclease A. Biochemistry 38:7284–7293

    PubMed  CAS  Google Scholar 

  • Wearne SJ, Creighton TE (1988) Further experimental studies of the disulfide folding transition of ribonuclease A. Proteins Struct Funct Genet 4:251–261

    PubMed  CAS  Google Scholar 

  • Wedemeyer WJ, Welker E, Scheraga HA (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41:14637–14644

    PubMed  CAS  Google Scholar 

  • Welker E, Narayan M, Volles MJ, Scheraga HA (1999) Two new structured intermediates in the oxidative folding of RNase A. FEBS Lett 460:477–479

    PubMed  CAS  Google Scholar 

  • Welker E, Maki K, Ramachandra Shastry MC, Juminaga D, Bhat R, Scheraga HA, Roder H (2004) Ultra-rapid mixing experiments shed new light on the characteristics of the initial conformational ensemble during the folding of ribonuclease A. Proc Natl Acad Sci USA 101:17681–17686

    PubMed  CAS  Google Scholar 

  • Welker E, Hathaway L, Xu G, Narayan M, Pradeep L, Shin HC, Scheraga HA (2007) Oxidative folding and N-terminal cyclization of onconase. Biochemistry 46:5485–5493

    PubMed  CAS  Google Scholar 

  • Williams RL, Greene SM, McPherson A (1987) The crystal structure of ribonuclease B at 2.5 Å resolution. J Biol Chem 262:16020–16031

    PubMed  CAS  Google Scholar 

  • Wlodawer A, Sjölin L (1983) Structure of ribonuclease A. Results of joint neutron and x-ray refinement at 2.0-Å resolution. Biochemistry 22:2720–2728

    PubMed  CAS  Google Scholar 

  • Xiong Y, Juminaga D, Swapna GVT, Wedemeyer WJ, Scheraga HA, Montelione GT (2000) Solution NMR evidence for a cis Tyr-Ala peptide group in the structure of [Pro93Ala] bovine pancreatic ribonuclease A. Protein Sci 9:421–426

    PubMed  CAS  Google Scholar 

  • Xu X, Scheraga HA (1998) Kinetic folding pathway of a three-disulfide mutant of bovine pancreatic ribonuclease A missing the [40–95] disulfide bond. Biochemistry 37:7561–7571

    PubMed  CAS  Google Scholar 

  • Xu X, Rothwarf DM, Scheraga HA (1996) Nonrandom distribution of the one-disulfide intermediates in the regeneration of ribonuclease A. Biochemistry 35:6406–6417

    PubMed  CAS  Google Scholar 

  • Xu G, Zhai H, Narayan M, McLafferty FW, Scheraga HA (2004a) Simultaneous characterization of the reductive unfolding pathways of RNase B isoforms by top-down mass spectrometry. Chem Biol 11:517–524

    PubMed  CAS  Google Scholar 

  • Xu G, Narayan M, Welker E, Scheraga HA (2004b) Characterization of the fast – forming intermediate, des [30–75], in the reductive unfolding of onconase. Biochemistry 43:3246–3254

    PubMed  CAS  Google Scholar 

  • Xu G, Narayan M, Scheraga HA (2005) The oxidative folding rate of bovine pancreatic ribonuclease is enhanced by a covalently attached oligosaccharide. Biochemistry 44:9817–9823

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold A. Scheraga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Scheraga, H.A. (2011). Ribonucleases as Models for Understanding Protein Folding. In: Nicholson, A. (eds) Ribonucleases. Nucleic Acids and Molecular Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21078-5_15

Download citation

Publish with us

Policies and ethics