Skip to main content

Plant Root Associated Biofilms: Perspectives for Natural Product Mining

  • Chapter
  • First Online:
Bacteria in Agrobiology: Plant Nutrient Management

Abstract

In natural systems microbial cells exist predominantly as biofilms. Cells in biofilms are physiologically and sometimes even morphologically distinct of planktonic cells of the same organism. Biofilm formation is regulated by variety of environmental signals, which may include nutrient sources, pH, temperature, and surface properties. The study locations where plants have coevolved with microbial representatives under stress over long period of time, facilitate the generation of theoretical testable, and predictable models of biodiversity and genome evolution. It is likely that microorganisms isolated from these environments offer new opportunities for the biotechnological applications. Physiological characteristics of the biofilms from contrasting environmental regions are discussed. In order to understand the complexity and potential of biofilm, sensitive analytical techniques are required. The range of techniques which can be used in biofilm studies are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahimou F, Semmens MJ, Novak PJ, Haugstad G (2007) Biofilm cohesiveness measurement using a novel atomic force microscopy methodology. Appl Environ Microbiol 73:2897–2904

    Article  PubMed  CAS  Google Scholar 

  • Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    Article  PubMed  CAS  Google Scholar 

  • Aparna M, Sharma P, Yadav S (2008) Biofilms: microbes and disease. Braz J Infect Dis 2:526–530

    Article  Google Scholar 

  • Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Chenu C (1993) Clay polysaccharide or sand polysaccharide associations as models for the interface between microorganisms and soil-water related properties and microstructure. Geoderma 56:143–156

    Article  CAS  Google Scholar 

  • Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotechnol 86:1267–1279

    Article  PubMed  CAS  Google Scholar 

  • Corre C, Challis GL (2009) New natural product biosynthetic chemistry discovered by genome mining. Nat Prod Rep 26:977–986

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745

    Article  PubMed  CAS  Google Scholar 

  • Cross SE, Kreth J, Zhu L, Sullivan R, Shi W, Qi F, Gimzewski JK (2007) Nanomechanical properties of glucans and associated cell-surface adhesion of Streptococcus mutans probed by atomic force microscopy under in situ conditions. Microbiology 153:3124–3132

    Article  PubMed  CAS  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW & Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Davey ME, O’Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  • Davies J (2009) Everything depends on everything else. Clin Microbiol Infect 15(Suppl 1):1–4

    Article  PubMed  Google Scholar 

  • Decho AW, Norman RS, Visscher PT (2010) Quorum sensing in natural environments: emerging views from microbial mats. Trends Microbiol 18:73–80

    Article  PubMed  CAS  Google Scholar 

  • Deutschbauer AM, Chivian D, Arkin AP (2006) Genomics for environmental microbiology. Curr Opin Biotechnol 17:229–235

    Article  PubMed  CAS  Google Scholar 

  • Dickschat JS (2010) Quorum sensing and bacterial biofilms. Nat Prod Rep 27:343–369

    Article  PubMed  CAS  Google Scholar 

  • Fajardo A, Martinez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol 16:588–593

    Article  PubMed  CAS  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    Article  PubMed  CAS  Google Scholar 

  • Francius G, Lebeer S, Alsteens D, Wildling L, Gruber HJ, Hols P, De Keersmaecker S, Vanderleyden J, Dufrene YF (2008) Detection, localization, and conformational analysis of single polysaccharide molecules on live bacteria. ACS Nano 2:1921–1929

    Article  PubMed  CAS  Google Scholar 

  • Furukawa S, Kuchma SL, O’Toole GA (2006) Keeping their options open: acute versus persistent infections. J Bacteriol 188:1211–1217

    Article  PubMed  CAS  Google Scholar 

  • Gabor E, Liebeton K, Niehaus F, Eck J, Lorenz P (2007) Updating the metagenomics toolbox. Biotechnol J 2:201–206

    Article  PubMed  CAS  Google Scholar 

  • Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030

    Article  PubMed  CAS  Google Scholar 

  • Haggag W, Timmusk S (2007) Colonization of peanut roots by biofilm forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. J Appl Microbiol 104:961–969

    Article  PubMed  Google Scholar 

  • Hamada T, Matsunaga S, Fujiwara M, Fujita K, Hirota H, Schmucki R, Guntert P, Fusetani N (2010) Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J Am Chem Soc 132:12941–12945

    Article  PubMed  CAS  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685

    Article  PubMed  CAS  Google Scholar 

  • Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3:347–355

    Article  PubMed  CAS  Google Scholar 

  • Hogan D, Kolter R (2002) Why are bacteria refractory to antimicrobials? Curr Opin Microbiol 5:472–477

    Article  PubMed  CAS  Google Scholar 

  • Joly D, Korol A, Nevo E (2004) Sperm size evolution in Drosophila: inter- and intraspecific analysis. Genetica 120:233–244

    Article  PubMed  Google Scholar 

  • Kallow W, von Dohren H, Kleinkauf H (1998) Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase from Acremonium chrysogenum. Biochemistry 37:5947–5952

    Article  PubMed  CAS  Google Scholar 

  • Kallow W, Pavela-Vrancic M, Dieckmann R, von Dohren H (2002) Nonribosomal peptide synthetases-evidence for a second ATP-binding site. Biochim Biophys Acta 1601:93–99

    Article  PubMed  CAS  Google Scholar 

  • Kleinkauf H, von Dohren H (1990) Nonribosomal biosynthesis of peptide antibiotics. Eur J Biochem 192:1–15

    Article  PubMed  CAS  Google Scholar 

  • Koglin A, Walsh CT (2009) Structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 26:987–1000

    Article  PubMed  CAS  Google Scholar 

  • Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302

    Article  PubMed  CAS  Google Scholar 

  • Langer M, Gabor EM, Liebeton K, Meurer G, Niehaus F, Schulze R, Eck J, Lorenz P (2006) Metagenomics: an inexhaustible access to nature’s diversity. Biotechnol J 1:815–821

    Article  PubMed  CAS  Google Scholar 

  • Lemon KP, Earl AM, Vlamakis HC, Aguilar C, Kolter R (2008) Biofilm development with an emphasis on Bacillus subtilis. Curr Top Microbiol Immunol 322:1–16

    Article  PubMed  CAS  Google Scholar 

  • Li X, Qin L (2005) Metagenomics-based drug discovery and marine microbial diversity. Trends Biotechnol 23:539–543

    Article  PubMed  CAS  Google Scholar 

  • Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 103:19484–19489

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DH, Viac J, Werling D, Reme CA, Gatto H (2007) Role of sugars in surface microbe-host interactions and immune reaction modulation. Vet Dermatol 18:197–204

    Article  PubMed  Google Scholar 

  • Lopez D, Vlamakis H, Kolter R (2009) Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 33:152–163

    Article  PubMed  CAS  Google Scholar 

  • Lopez D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398

    Article  PubMed  Google Scholar 

  • Lorenz P, Eck J (2005) Metagenomics and industrial applications. Nat Rev Microbiol 3:510–516

    Article  PubMed  CAS  Google Scholar 

  • Lulevich V, Zink T, Chen HY, Liu FT, Liu GY (2006) Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir 22:8151–8155

    Article  PubMed  CAS  Google Scholar 

  • Martin-Cereceda M, Roberts EC, Wootton EC, Bonaccorso E, Dyal P, Guinea A, Rogers D, Wright CJ, Novarino G (2010) Morphology, ultrastructure, and small subunit rDNA phylogeny of the marine heterotrophic flagellate Goniomonas aff. amphinema. J Eukaryot Microbiol 57:159–170

    Article  PubMed  CAS  Google Scholar 

  • McEwen GD, Wu Y, Zhou A (2010) Probing nanostructures of bacterial extracellular polymeric substances versus culture time by Raman microspectroscopy and atomic force microscopy. Biopolymers 93(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • McIntosh JA, Donia MS, Schmidt EW (2009) Ribosomal peptide natural products: bridging the ribosomal and nonribosomal worlds. Nat Prod Rep 26:537–559

    Article  PubMed  CAS  Google Scholar 

  • Mesak LR, Miao V, Davies J (2008) Effects of subinhibitory concentrations of antibiotics on SOS and DNA repair gene expression in Staphylococcus aureus. Antimicrob Agents Chemother 52:3394–3397

    Article  PubMed  CAS  Google Scholar 

  • Mlot C (2009) Microbiology. Antibiotics in nature: beyond biological warfare. Science 324:1637–1639

    Article  PubMed  CAS  Google Scholar 

  • Monds RD, O’Toole GA (2009) The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17:73–87

    Article  PubMed  CAS  Google Scholar 

  • Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35:157–168

    Article  PubMed  CAS  Google Scholar 

  • Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6:e14

    Article  PubMed  Google Scholar 

  • Nevo E (1995) Asian, African and European biota meet at “Evolution Canyon” Israel: local tests of global biodiversity and genetic diversity patterns. Proc R Soc Lond (Biol) 262:149–155

    Article  Google Scholar 

  • Nevo E (1997) Evolution in action across phylogeny caused by microclimatic stresses at “Evolution Canyon”. Theor Popul Biol 52:231–243

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2006) ‘Evolution Canyon’: a microcosm of life’s evolution focusing on adaptation and speciation. Israel J Ecol Evolut 52:485–506

    Google Scholar 

  • Nevo E (2009) Ecological genomics of natural plant populations: the Israeli perspective. Methods Mol Biol 513:321–344

    Article  PubMed  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement. Springer, Berlin

    Google Scholar 

  • Nunez ME, Martin MO, Chan PH, Spain EM (2005) Predation, death, and survival in a biofilm: Bdellovibrio investigated by atomic force microscopy. Colloids Surf B Biointerfaces 42:263–271

    Article  PubMed  CAS  Google Scholar 

  • O’Toole GA, Kolter R (1998) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304

    Article  PubMed  Google Scholar 

  • O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79

    Article  PubMed  Google Scholar 

  • Oh YJ, Lee NR, Jo W, Jung WK, Lim JS (2009) Effects of substrates on biofilm formation observed by atomic force microscopy. Ultramicroscopy 109:874–880

    Article  PubMed  CAS  Google Scholar 

  • Pavlicek T, Sharon D, Kravchenko LV, Saaroni H, Nevo E (2003) Microclimatic interslope differences underlying biodiversity contrasts in “Evolution Canyon”, Mt. Carmel, Israel. Isr J Earth Sci 52:1–9

    Article  Google Scholar 

  • Powell A, Nakeeb MAl, Wilkinson B, Micklefield J (2007a) Precursor-directed biosynthesis of nonribosomal lipopeptides with modified glutamate residues. Chem Commun (Camb) 2683–2685

    Google Scholar 

  • Powell A, Borg M, Amir-Heidari B, Neary JM, Thirlway J, Wilkinson B, Smith CP, Micklefield J (2007b) Engineered biosynthesis of nonribosomal lipopeptides with modified fatty acid side chains. J Am Chem Soc 129:15182–15191

    Article  PubMed  CAS  Google Scholar 

  • Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603

    Article  PubMed  CAS  Google Scholar 

  • Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26:576–590

    Article  PubMed  CAS  Google Scholar 

  • Shank EA, Kolter R (2009) New developments in microbial interspecies signaling. Curr Opin Microbiol 12:205–214

    Article  PubMed  CAS  Google Scholar 

  • Singh SB, Pelaez F (2008) Biodiversity, chemical diversity and drug discovery. Prog Drug Res 65:143–174

    Google Scholar 

  • Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N (2009) Metagenomics: concept, methodology, ecological inference and recent advances. Biotechnol J 4:480–494

    Article  PubMed  CAS  Google Scholar 

  • Skindersoe ME, Ettinger-Epstein P, Rasmussen TB, Bjarnsholt T, de Nys R, Givskov M (2008) Quorum sensing antagonism from marine organisms. Mar Biotechnol (NY) 10:56–63

    Article  CAS  Google Scholar 

  • Sletmoen M, Maurstad G, Sikorski P, Paulsen BS, Stokke BT (2003) Characterisation of bacterial polysaccharides: steps towards single-molecular studies. Carbohydr Res 338:2459–2475

    Article  PubMed  CAS  Google Scholar 

  • Stahl DA, Wagner M (2006) The knowledge explosion in environmental microbiology offers new opportunities in biotechnology. Curr Opin Biotechnol 17:227–228

    Article  CAS  Google Scholar 

  • Stanley NR, Lazazzera BA (2004) Environmental signals and regulatory pathways that influence biofilm formation. Mol Microbiol 52:917–924

    Article  PubMed  CAS  Google Scholar 

  • Steele A, Goddard D, Beech IB, Tapper RC, Stapleton D, Smith JR (1998) Atomic force microscopy imaging of fragments from the Martian meteorite ALH84001. J Microsc 189:2–7

    Article  PubMed  CAS  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    PubMed  CAS  Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71:7327–7333

    Article  PubMed  CAS  Google Scholar 

  • Taupp M, Lee S, Hawley A, Yang J, Hallam SJ (2009) Large insert environmental genomic library production. J Vis Exp 23(31):1387

    Google Scholar 

  • Thoendel M, Horswill AR (2010) Biosynthesis of peptide signals in gram-positive bacteria. Adv Appl Microbiol 71:91–112

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Wagner EG (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 11:7292–7300

    Article  Google Scholar 

  • Timmusk S, Paalme V, Lagercratz U, Nevo E (2007) Detection and quantification of plant drought tolerance enhancing bacterium Paenibacillus polymyxa in the rhizosphere of wild barley (Hordeum spontaneum) with real-time PCR. J Appl Microbiol 107:736–745

    Article  Google Scholar 

  • Timmusk S, van West P, Gow CN, Huffstutler RP (2009) Biofilm forming Paenibacillus polymyxa antagonizes oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum. J Appl Microbiol 106:1473–1481

    Article  PubMed  CAS  Google Scholar 

  • Timmusk S, Paalme V, Pavlicek T, Bergquist J, Vangala A, Danilas T, Nevo E (2011) Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PloS One 6(3):e17968

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela L, Chi A, Beard S, Orell A, Guiliani N, Shabanowitz J, Hunt DF, Jerez CA (2006) Genomics, metagenomics and proteomics in biomining microorganisms. Biotechnol Adv 24:197–211

    Article  PubMed  CAS  Google Scholar 

  • Volle CB, Ferguson MA, Aidala KE, Spain EM, Nunez ME (2008a) Quantitative changes in the elasticity and adhesive properties of Escherichia coli ZK1056 prey cells during predation by Bdellovibrio bacteriovorus 109J. Langmuir 24:8102–8110

    Article  PubMed  CAS  Google Scholar 

  • Volle CB, Ferguson MA, Aidala KE, Spain EM, Nunez ME (2008b) Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids Surf B Biointerfaces 67:32–40

    Article  PubMed  CAS  Google Scholar 

  • Vu B, Chen M, Crawford RJ, Ivanova EP (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 14:2535–2554

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Tan H (2009) Molecular regulation of microbial secondary metabolites – a review. Wei Sheng Wu Xue Bao 49:411–416

    PubMed  CAS  Google Scholar 

  • Ward N, Fraser CM (2005) How genomics has affected the concept of microbiology. Curr Opin Microbiol 8:564–571

    Article  PubMed  CAS  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  PubMed  CAS  Google Scholar 

  • Watnick P, Kolter R (2000) Biofilm, city of microbes. J Bacteriol 182:2675–2679

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson B, Micklefield J (2007) Mining and engineering natural-product biosynthetic pathways. Nat Chem Biol 3:379–386

    Article  PubMed  CAS  Google Scholar 

  • Yagasaki M, Hashimoto S (2008) Synthesis and application of dipeptides; current status and perspectives. Appl Microbiol Biotechnol 81:13–22

    Article  PubMed  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2006) The truth about antibiotics. Int J Med Microbiol 296:163–170

    Article  PubMed  CAS  Google Scholar 

  • Yim G, Wang HH, Davies J (2007) Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200

    Article  PubMed  CAS  Google Scholar 

  • Yin J, Straight PD, Hrvatin S, Dorrestein PC, Bumpus SB, Jao C, Kelleher NL, Kolter R, Walsh CT (2007) Genome-wide high-throughput mining of natural-product biosynthetic gene clusters by phage display. Chem Biol 14:303–312

    Article  PubMed  CAS  Google Scholar 

  • Zegans ME, Becker HI, Budzik J, O’Toole G (2002) The role of bacterial biofilms in ocular infections. DNA Cell Biol 21:415–420

    Article  PubMed  CAS  Google Scholar 

  • Zhang XQ, Bishop PL, Kupferle MJ (1998) Measurement of polysaccharides and proteins in biofilm extracellular polymers. Water Sci Technol 37:345–348

    CAS  Google Scholar 

  • Zhang H, Wang Y, Pfeifer BA (2008) Bacterial hosts for natural product production. Mol Pharm 5:212–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salme Timmusk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Timmusk, S., Nevo, E. (2011). Plant Root Associated Biofilms: Perspectives for Natural Product Mining. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Plant Nutrient Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21061-7_12

Download citation

Publish with us

Policies and ethics