Skip to main content

Simulation-Driven Design in Microwave Engineering: Methods

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 356))

Abstract

Today, electromagnetic (EM) simulation is inherent in analysis and design of microwave components. Available simulation packages allow engineers to obtain accurate responses of microwave structures. In the same time the task of microwave component design can be formulated and solved as an optimization problem where the objective function is supplied by an EM solver. Unfortunately, accurate simulations may be computationally expensive; therefore, optimization approaches with the EM solver directly employed in the optimization loop may be very time consuming or even impractical. On the other hand, computationally efficient microwave designs can be realized using surrogate-based optimization. In this chapter, simulation-driven design methods for microwave engineering are described where optimization of the original model is replaced by iterative re-optimization of its surrogate, a computationally cheap low-fidelity model which, in the same time, should have reliable prediction capabilities. These optimization methods include space mapping, simulation-based tuning, variable-fidelity optimization, and various response correction techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandler, J.W., Chen, S.H.: Circuit optimization: the state of the art. IEEE Trans. Microwave Theory Tech. 36, 424–443 (1988)

    Article  Google Scholar 

  2. Bandler, J.W., Biernacki, R.M., Chen, S.H., Swanson, J.D.G., Ye, S.: Microstrip filter design using direct EM field simulation. IEEE Trans. Microwave Theory Tech. 42, 1353–1359 (1994)

    Article  Google Scholar 

  3. Swanson Jr., D.G.: Optimizing a microstrip bandpass filter using electromagnetics. Int. J. Microwave and Millimeter-Wave CAE 5, 344–351 (1995)

    Article  MathSciNet  Google Scholar 

  4. De Zutter, D., Sercu, J., Dhaene, V., De Geest, J., Demuynck, F.J., Hammadi, S., Paul, C.-W.: Recent trends in the integration of circuit optimization and full-wave electromagnetic analysis. IEEE Trans. Microwave Theory Tech. 52, 245–256 (2004)

    Article  Google Scholar 

  5. Schantz, H.: The art and science of ultrawideband antennas. Artech House, Boston (2005)

    Google Scholar 

  6. Wu, K.: Substrate Integrated Circuits (SiCs) – A new paradigm for future Ghz and Thz electronic and photonic systems. IEEE Circuits Syst. Soc. Newsletter 3 (2009)

    Google Scholar 

  7. Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J.: Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech. 52, 337–361 (2004)

    Article  Google Scholar 

  8. Director, S.W., Rohrer, R.A.: The generalized adjoint network and network sensitivities. IEEE Trans. Circuit Theory CT-16, 318–323 (1969)

    Article  Google Scholar 

  9. CST Microwave Studio, ver. 20109 CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany (2010)

    Google Scholar 

  10. HFSS, release 13.0, ANSYS (2010), http://www.ansoft.com/products/hf/hfss/

  11. Wrigth, S.J., Nocedal, J.: Numerical Optimization. Springer, Heidelberg (1999)

    Google Scholar 

  12. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45, 385–482 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lai, M.-I., Jeng, S.-K.: Compact microstrip dual-band bandpass filters design using genetic-algorithm techniques. IEEE Trans. Microwave Theory Tech. 54, 160–168 (2006)

    Article  Google Scholar 

  14. Haupt, R.L.: Antenna design with a mixed integer genetic algorithm. IEEE Trans. Antennas Propag. 55, 577–582 (2007)

    Article  Google Scholar 

  15. Jin, N., Rahmat-Samii, Y.: Parallel particle swarm optimization and finite- difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs. IEEE Trans. Antennas Propag. 53, 3459–3468 (2005)

    Article  Google Scholar 

  16. Jin, N., Rahmat-Samii, Y.: Analysis and particle swarm optimization of correlator antenna arrays for radio astronomy applications. IEEE Trans. Antennas Propag. 56, 1269–1279 (2008)

    Article  Google Scholar 

  17. Sonnet em. Ver. 12.54, Sonnet Software. North Syracuse, NY (2009)

    Google Scholar 

  18. FEKO User’s Manual. Suite 5.5, EM Software & Systems-S.A (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa (2009)

    Google Scholar 

  19. Bandler, J.W., Seviora, R.E.: Wave sensitivities of networks. IEEE Trans. Microwave Theory Tech. 20, 138–147 (1972)

    Article  Google Scholar 

  20. Chung, Y.S., Cheon, C., Park, I.H., Hahn, S.Y.: Optimal design method for microwave device using time domain method and design sensitivity analysis-part II: FDTD case. IEEE Trans. Magn. 37, 3255–3259 (2001)

    Article  Google Scholar 

  21. Bakr, M.H., Nikolova, N.K.: An adjoint variable method for time domain TLM with fixed structured grids. IEEE Trans. Microwave Theory Tech. 52, 554–559 (2004)

    Article  Google Scholar 

  22. Nikolova, N.K., Tam, H.W., Bakr, M.H.: Sensitivity analysis with the FDTD method on structured grids. IEEE Trans. Microwave Theory Tech. 52, 1207–1216 (2004)

    Article  Google Scholar 

  23. Webb, J.P.: Design sensitivity of frequency response in 3-D finite-element analysis of microwave devices. IEEE Trans. Magn. 38, 1109–1112 (2002)

    Article  Google Scholar 

  24. Nikolova, N.K., Bandler, J.W., Bakr, M.H.: Adjoint techniques for sensitivity analysis in high-frequency structure CAD. IEEE Trans. Microwave Theory Tech. 52, 403–419 (2004)

    Article  Google Scholar 

  25. Ali, S.M., Nikolova, N.K., Bakr, M.H.: Recent advances in sensitivity analysis with frequency-domain full-wave EM solvers. Applied Computational Electromagnetics Society J. 19, 147–154 (2004)

    Google Scholar 

  26. El Sabbagh, M.A., Bakr, M.H., Nikolova, N.K.: Sensitivity analysis of the scattering parameters of microwave filters using the adjoint network method. Int. J. RF and Microwave Computer-Aided Eng. 16, 596–606 (2006)

    Article  Google Scholar 

  27. Snyder, R.V.: Practical aspects of microwave filter development. IEEE Microwave Magazine 8(2), 42–54 (2007)

    Article  Google Scholar 

  28. Shin, S., Kanamaluru, S.: Diplexer design using EM and circuit simulation techniques. IEEE Microwave Magazine 8(2), 77–82 (2007)

    Article  Google Scholar 

  29. Bhargava, A.: Designing circuits using an EM/circuit co-simulation technique. RF Design.  76 (January 2005)

    Google Scholar 

  30. Koziel, S., Bandler, S.W., Madsen, K.: A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech. 54, 3721–3730 (2006)

    Article  Google Scholar 

  31. Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K.: Surrogate based analysis and optimization. Progress in Aerospace Sciences 41, 1–28 (2005)

    Article  Google Scholar 

  32. Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerospace Sciences 45, 50–79 (2009)

    Article  Google Scholar 

  33. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust Region Methods. MPS-SIAM Series on Optimization (2000)

    Google Scholar 

  34. Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V.: A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15, 16–23 (1998)

    Google Scholar 

  35. Booker, A.J., Dennis Jr., J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W.: A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization 17, 1–13 (1999)

    Article  Google Scholar 

  36. Amari, S., LeDrew, C., Menzel, W.: Space-mapping optimization of planar coupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech. 54, 2153–2159 (2006)

    Article  Google Scholar 

  37. Crevecoeur, G., Sergeant, P., Dupre, L., Van de Walle, R.: Two-level response and parameter mapping optimization for magnetic shielding. IEEE Trans. Magn. 44, 301–308 (2008)

    Article  Google Scholar 

  38. Koziel, S., Bandler, J.W., Madsen, K.: Quality assessment of coarse models and surrogates for space mapping optimization. Optimization Eng. 9, 375–391 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Koziel, S., Bandler, J.W.: Space-mapping optimization with adaptive surrogate model. IEEE Trans. Microwave Theory Tech. 55, 541–547 (2007)

    Article  Google Scholar 

  40. Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K.: Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers 17, 129–150 (2001)

    Article  MATH  Google Scholar 

  41. Miraftab, V., Mansour, R.R.: EM-based microwave circuit design using fuzzy logic techniques. IEE Proc. Microwaves, Antennas & Propagation 153, 495–501 (2006)

    Article  Google Scholar 

  42. Yang, Y., Hu, S.M., Chen, R.S.: A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits. Microwave Opt. Technol. Lett. 44, 296–299 (2005)

    Article  Google Scholar 

  43. Xia, L., Meng, J., Xu, R., Yan, B., Guo, Y.: Modeling of 3-D vertical interconnect using support vector machine regression. IEEE Microwave Wireless Comp. Lett. 16, 639–641 (2006)

    Article  Google Scholar 

  44. Burrascano, P., Dionigi, M., Fancelli, C., Mongiardo, M.: A neural network model for CAD and optimization of microwave filters. In: IEEE MTT-S Int. Microwave Symp. Dig., Baltimore, MD, pp. 13–16 (1998)

    Google Scholar 

  45. Zhang, L., Xu, J., Yagoub, M.C.E., Ding, R., Zhang, Q.-J.: Efficient analytical formulation and sensitivity analysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans. Microwave Theory Tech. 53, 2752–2767 (2005)

    Article  Google Scholar 

  46. Kabir, H., et al.: Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech. 56, 867–879 (2008)

    Article  Google Scholar 

  47. Pozar, D.M.: Microwave Engineering, 3rd edn. Wiley, Chichester (2004)

    Google Scholar 

  48. Koziel, S., Cheng, Q.S., Bandler, J.W.: Implicit space mapping with adaptive selection of preassigned parameters. IET Microwaves, Antennas & Propagation 4, 361–373 (2010)

    Article  Google Scholar 

  49. Agilent ADS. Version 2009, Agilent Technologies, 395 Page Mill Road, Palo Alto, CA, 94304 (2009)

    Google Scholar 

  50. Koziel, S., Meng, J., Bandler, J.W., Bakr, M.H., Cheng, Q.S.: Accelerated microwave design optimization with tuning space mapping. IEEE Trans. Microwave Theory and Tech. 57, 383–394 (2009)

    Article  Google Scholar 

  51. Koziel, S.: Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech. (2010) (to appear)

    Google Scholar 

  52. Koziel, S., Ogurtsov, S.: Robust multi-fidelity simulation-driven design optimization of microwave structures. In: IEEE MTT-S Int. Microwave Symp. Dig., Anaheim, CA, pp. 201–204 (2010)

    Google Scholar 

  53. Koziel, S.: Efficient optimization of microwave structures through design specifications adaptation. In: IEEE Int. Symp. Antennas Propag., Toronto, Canada (2010)

    Google Scholar 

  54. Bandler, J.W., Salama, A.E.: Functional approach to microwave postproduction tuning. IEEE Trans. Microwave Theory Tech. 33, 302–310 (1985)

    Article  Google Scholar 

  55. Swanson, D., Macchiarella, G.: Microwave filter design by synthesis and optimization. IEEE Microwave Magazine 8(2), 55–69 (2007)

    Article  Google Scholar 

  56. Rautio, J.C.: EM-component-based design of planar circuits. IEEE Microwave Magazine 8(4), 79–90 (2007)

    Article  Google Scholar 

  57. Cheng, Q.S., Bandler, J.W., Koziel, S.: Tuning Space Mapping Optimization Exploiting Embedded Surrogate Elements. In: IEEE MTT-S Int. Microwave Symp. Dig., Boston, MA, pp. 1257–1260 (2009)

    Google Scholar 

  58. Koziel, S., Bandler, J.W., Cheng, Q.S.: Design optimization of microwave circuits through fast embedded tuning space mapping. In: European Microwave Conference, Paris, September 26-October 1 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koziel, S., Ogurtsov, S. (2011). Simulation-Driven Design in Microwave Engineering: Methods. In: Koziel, S., Yang, XS. (eds) Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, vol 356. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20859-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20859-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20858-4

  • Online ISBN: 978-3-642-20859-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics