Skip to main content

Mining Association Rules for Label Ranking

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6635))

Included in the following conference series:

Abstract

Recently, a number of learning algorithms have been adapted for label ranking, including instance-based and tree-based methods. In this paper, we propose an adaptation of association rules for label ranking. The adaptation, which is illustrated in this work with APRIORI Algorithm, essentially consists of using variations of the support and confidence measures based on ranking similarity functions that are suitable for label ranking. We also adapt the method to make a prediction from the possibly conflicting consequents of the rules that apply to an example. Despite having made our adaptation from a very simple variant of association rules for classification, the results clearly show that the method is making valid predictions. Additionally, they show that it competes well with state-of-the-art label ranking algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499 (1994)

    Google Scholar 

  2. Aiguzhinov, A., Soares, C., Serra, A.P.: A similarity-based adaptation of naive bayes for label ranking: Application to the metalearning problem of algorithm recommendation. In: Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS, vol. 6332, pp. 16–26. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Azevedo, P.J., Jorge, A.M.: Ensembles of jittered association rule classifiers. Data Min. Knowl. Discov. 21(1), 91–129 (2010)

    Article  Google Scholar 

  4. Bayardo, R., Agrawal, R., Gunopulos, D.: Constraint-based rule mining in large, dense databases. Data Mining and Knowledge Discovery 4(2), 217–240 (2000)

    Article  Google Scholar 

  5. Brazdil, P., Soares, C., Costa, J.: Ranking Learning Algorithms: Using IBL and Meta-Learning on Accuracy and Time Results. Machine Learning 50(3), 251–277 (2003)

    Article  MATH  Google Scholar 

  6. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the 1997 ACM SIGMOD international conference on Management of data - SIGMOD 1997, pp. 255–264 (1997)

    Google Scholar 

  7. Cheng, W., Hühn, J., Hüllermeier, E.: Decision tree and instance-based learning for label ranking. In: ICML 2009: Proceedings of the 26th Annual International Conference on Machine Learning, pp. 161–168. ACM, New York (2009)

    Google Scholar 

  8. Pinto da Costa, J., Soares, C.: A weighted rank measure of correlation. Australian & New Zealand Journal of Statistics 47(4), 515–529 (2005)

    Article  MATH  Google Scholar 

  9. Dekel, O., Manning, C.D., Singer, Y.: Log-linear models for label ranking. Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  10. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization of continuous features. In: Machine Learning - International Workshop Then Conference, pp. 194–202 (1995)

    Google Scholar 

  11. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued attributes for classification learning. In: IJCAI, pp. 1022–1029 (1993)

    Google Scholar 

  12. Fürnkranz, J., Hüllermeier, E.: Preference learning. KI 19(1), 60 (2005)

    MATH  Google Scholar 

  13. Har-Peled, S., Roth, D., Zimak, D.: Constraint classification: A new approach to multiclass classification. In: Cesa-Bianchi, N., Numao, M., Reischuk, R. (eds.) ALT 2002. LNCS (LNAI), vol. 2533, pp. 365–379. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell. 172(16-17), 1897–1916 (2008)

    Article  MATH  Google Scholar 

  15. Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  16. Kendall, M., Gibbons, J.: Rank correlation methods. Griffin, London (1970)

    MATH  Google Scholar 

  17. Lebanon, G., Lafferty, J.D.: Conditional Models on the Ranking Poset. In: NIPS, pp. 415–422 (2002)

    Google Scholar 

  18. Liu, B., Hsu, W., Ma, Y.: Integrating classification and association rule mining. In: Knowledge Discovery and Data Mining, pp. 80–86 (1998)

    Google Scholar 

  19. Park, J.S., Chen, M.S., Yu, P.S.: An effective hash-based algorithm for mining association rules. ACM SIGMOD Record 24(2), 175–186 (1995)

    Article  Google Scholar 

  20. Park, J.S., Chen, M.S., Yu, P.S.: Efficient parallel and data mining for association rules. In: CIKM, pp. 31–36 (1995)

    Google Scholar 

  21. R Development Core Team: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2010), http://www.R-project.org ISBN 3-900051-07-0

  22. Spearman, C.: The proof and measurement of association between two things. American Journal of Psychology 15, 72–101 (1904)

    Article  Google Scholar 

  23. Thomas, S., Sarawagi, S.: Mining generalized association rules and sequential patterns using sql queries. In: KDD, pp. 344–348 (1998)

    Google Scholar 

  24. Todorovski, L., Blockeel, H., Džeroski, S.: Ranking with Predictive Clustering Trees. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 444–455. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Vembu, S., Gärtner, T.: Label Ranking Algorithms: A Survey. In: Fürnkranz, J., Hüllermeier, E. (eds.) Preference Learning. Springer, Heidelberg (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Sá, C.R., Soares, C., Jorge, A.M., Azevedo, P., Costa, J. (2011). Mining Association Rules for Label Ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2011. Lecture Notes in Computer Science(), vol 6635. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20847-8_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20847-8_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20846-1

  • Online ISBN: 978-3-642-20847-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics