Skip to main content

SANTIAGO - A Real-Time Biological Neural Network Environment for Generative Music Creation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6625))

Abstract

In this work we present a novel approach for interactive music generation based on the dynamics of biological neural networks. We develop SANTIAGO, a real-time environment built in Pd-Gem, which allows to assemble networks of realistic neuron models and map the activity of individual neurons to sound events (notes) and to modulations of the sound event parameters (duration, pitch, intensity, spectral content). The rich behavior exhibited by this type of networks gives rise to complex rhythmic patterns, melodies and textures that are neither too random nor too uniform, and that can be modified by the user in an interactive way.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Danks, M.: Real-time image and video processing in Gem. In: Proceedings of the International Computer Music Conference, pp. 220–223. International Computer Music Association, San Francisco (1997)

    Google Scholar 

  2. Destexhe, A., Marder, E.: Plasticity in single neuron and circuit computations. Nature 431, 789–795 (2004)

    Article  Google Scholar 

  3. Eldridge, A.C.: Neural Oscillator Synthesis: generating adaptative signals with a continuous-time nerual model

    Google Scholar 

  4. Franklin, J.A.: Recurrent neural networks for music computation. INFORMS Journal on Computing 18(3), 312 (2006)

    Article  Google Scholar 

  5. Galanter, P.: What is generative art? Complexity theory as a context for art theory. In: GA2003–6th Generative Art Conference (2003)

    Google Scholar 

  6. Gribbin, J.: Deep Simplicity: Bringing Order to Chaos and Complexity. Random House (2005)

    Google Scholar 

  7. Hooper, S.L.: Central Pattern Generators. Embryonic ELS (1999)

    Google Scholar 

  8. Huron, D.: Sweet anticipation: Music and the psychology of expectation. MIT Press, Cambridge (2008)

    Google Scholar 

  9. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Networks 14(6), 1569–1572 (2004)

    Article  MathSciNet  Google Scholar 

  10. Izhikevich, E.M.: Dynamical systems in neuroscience: The geometry of excitability and bursting. The MIT press, Cambridge (2007)

    Google Scholar 

  11. Kocho, K., Segev, I.: The role of single neurons in information processing. Nature Neuroscience 3, 1171–1177 (2000)

    Article  Google Scholar 

  12. Matsuoka, K.: Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics 52(6), 367–376 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Molnár, G., et al.: Complex Events Initiated by Individual Spikes in the Human Cerebral Cortex. PLoS Biol. 6(9), e222 (2008)

    Article  Google Scholar 

  14. Mozer, M.C.: Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi-scale processing. Connection Science 6(2), 247–280 (1994)

    Article  MathSciNet  Google Scholar 

  15. Puckette, M.S.: Pure Data. In: Proceedings, International Computer Music Conference, pp. 269–272. International Computer Music Association, San Francisco (1996)

    Google Scholar 

  16. Soltau, H., Schultz, T., Westphal, M., Waibel, A.: Recognition of music types. In: Proceedings of the 1998 IEEE International, vol. 2, pp. 1137–1140. IEEE, Los Alamitos (2002)

    Google Scholar 

  17. Taylor, I., Greenhough, M.: Modelling pitch perception with adaptive resonance theory artificial neural networks. Connection Science 6(6), 135–154 (1994)

    Article  Google Scholar 

  18. Yadegari, S.: Chaotic Signal Synthesis with Real-Time Control - Solving Differential Equations in Pd, Max-MSP, and JMax. In: Proceedings of the 6th International Conference on Digital Audio Effects (DAFx 2003), London (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kerlleñevich, H., Riera, P.E., Eguia, M.C. (2011). SANTIAGO - A Real-Time Biological Neural Network Environment for Generative Music Creation. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics