Skip to main content

Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity

  • Chapter
  • First Online:
Casimir Physics

Part of the book series: Lecture Notes in Physics ((LNP,volume 834))

Abstract

From the beginning of the subject, calculations of quantum vacuum energies or Casimir energies have been plagued with two types of divergences: The total energy, which may be thought of as some sort of regularization of the zero-point energy, \(\sum\frac{1}{ 2}\hbar\omega,\) seems manifestly divergent. And local energy densities, obtained from the vacuum expectation value of the energy-momentum tensor, \(\langle T_{00}\rangle ,\) typically diverge near boundaries. These two types of divergences have little to do with each other. The energy of interaction between distinct rigid bodies of whatever type is finite, corresponding to observable forces and torques between the bodies, which can be unambiguously calculated. The divergent local energy densities near surfaces do not change when the relative position of the rigid bodies is altered. The self-energy of a body is less well-defined, and suffers divergences which may or may not be removable. Some examples where a unique total self-stress may be evaluated include the perfectly conducting spherical shell first considered by Boyer, a perfectly conducting cylindrical shell, and dilute dielectric balls and cylinders. In these cases the finite part is unique, yet there are divergent contributions which may be subsumed in some sort of renormalization of physical parameters. The finiteness of self-energies is separate from the issue of the physical observability of the effect. The divergences that occur in the local energy-momentum tensor near surfaces are distinct from the divergences in the total energy, which are often associated with energy located exactly on the surfaces. However, the local energy-momentum tensor couples to gravity, so what is the significance of infinite quantities here? For the classic situation of parallel plates there are indications that the divergences in the local energy density are consistent with divergences in Einstein’s equations; correspondingly, it has been shown that divergences in the total Casimir energy serve to precisely renormalize the masses of the plates, in accordance with the equivalence principle. This should be a general property, but has not yet been established, for example, for the Boyer sphere. It is known that such local divergences can have no effect on macroscopic causality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In general, this need not be the case. For example, Romeo and Saharian [54] show that with mixed boundary conditions the surface divergences need not vanish for parallel plates. For additional work on local effects with mixed (Robin) boundary conditions, applied to spheres and cylinders, and corresponding global effects, see [55–57, 50]. See also Sect. 3.2.2 and [51, 53].

  2. 2.

    The first steps have been made for calculating the Casimir energy for an ellipsoidal boundary [34, 35], but only for scalar fields since the vector Helmholtz equation is not separable in the exterior region.

  3. 3.

    Note that the corresponding TE contribution the electromagnetic Casimir pressure would not be zero, for there the sum starts from \(l=1\).

  4. 4.

    Note there is a sign error in (4.8) of [74].

  5. 5.

    This argument is a bit suspect, since the analytic continuation that defines the integrals has no common region of existence. Thus the argument in the following subsection may be preferable. However, since that term is properly a contact term, it should in any event be spurious.

  6. 6.

    Note that in previous works, such as [45, 46], the surface term was included, because the integration was carried out only over the interior and exterior regions. Here we integrate over the surface as well, so the additional so-called surface energy is automatically included. This is described in the argument leading to (3.20a). Note, however, if (3.226) is integrated over a small interval enclosing the \(\delta\)-function potential,

    $$ \int\limits_{\xi_1-\epsilon}^{\xi_1+\epsilon} \hbox{d}\xi \xi f_\xi=-\xi_1\Updelta T^{\xi\xi}, $$

    where \(\Updelta T^{\xi\xi}\) is the discontinuity in the normal-normal component of the stress density. Dividing this expression by \(\xi_1\) gives the usual expression for the force on the plate.

References

  1. Casimir, H.B.G.: On the attraction between two perfectly conducting plates. Proc. Kon. Ned. Akad. Wetensch. 51, 793 (1948)

    MATH  Google Scholar 

  2. London, F.: Theory and system of molecular forces. Z. Physik 63, 245 (1930)

    Article  ADS  MATH  Google Scholar 

  3. Casimir, H.B.G., Polder, D.: The influence of retardation on the London-Van Der Waals forces. Phys. Rev. 73, 360 (1948)

    Article  ADS  MATH  Google Scholar 

  4. Casimir, H.B.G.: In: Bordag, M. (ed.) The Casimir Effect 50 Years Later: The Proceedings of the Fourth Workshop on Quantum Field Theory Under the Influence of External Conditions, World Scientific, Singapore, p. 3, (1999)

    Google Scholar 

  5. Jaffe, R.L.: Unnatural acts: Unphysical consequences of imposing boundary conditions on quantum fields. AIP Conf. Proc. 687, p. 3 (2003). arXiv:hep-th/0307014

    Google Scholar 

  6. Lifshitz, E.M.: Zh. Eksp. Teor. Fiz. 29, 94 (1956), [English translation: The theory of molecular attractive forces between solids. Soviet Phys. JETP 2,73 (1956)]

    Google Scholar 

  7. Dzyaloshinskii, I.D., Lifshitz, E. M., Pitaevskii, L.P.: Zh. Eksp. Teor. Fiz. 37, 229 (1959), [English translation: Van der Waals forces in liquid films. Soviet Phys. JETP 10, 161 (1960)]

    Google Scholar 

  8. Dzyaloshinskii, I.D., Lifshitz, E.M., Pitaevskii, L.P., Usp. Fiz. Nauk 73, 381(1961), [English translation: General theory of van der Waals forces. Soviet Phys. Usp. 4, 153 (1961)]

    Google Scholar 

  9. Bordag, M., Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: Advances in the Casimir Effect. Int. Ser. Monogr. Phys. 145, 1 (2009). (Oxford University Press, Oxford, 2009)

    Google Scholar 

  10. Klimchitskaya, G.L., Mohideen, U., Mostepanenko, V.M.: The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81, 1827 (2009). arXiv:0902.4022[cond-mat.other]

    Article  ADS  Google Scholar 

  11. Deryagin(Derjaguin), B.V.: Analysis of friction and adhesion IV: The theory of the adhesion of small particles. Kolloid Z. 69, 155 (1934)

    Article  Google Scholar 

  12. Deryagin(Derjaguin), B.V. et al.: Effect of contact deformations on the adhesion of particles. J. Colloid. Interface Sci. 53, 314 (1975)

    Article  Google Scholar 

  13. Blocki, J., Randrup, J., ĹšwiÄ…tecki, W. J., Tsang, C.F.: Proximity forces. Ann. Phys. (N.Y.) 105, 427 (1977)

    Article  ADS  Google Scholar 

  14. Milton, K.A.: Recent developments in the Casimir effect. J. Phys. Conf. Ser. 161, 012001 (2009). [hep-th]]

    Google Scholar 

  15. Boyer, T.H.: Quantum electromagnetic zero point energy of a conducting spherical shell and the Casimir model for a charged particle. Phys. Rev. 174, 1764 (1968)

    Article  ADS  Google Scholar 

  16. Lukosz, W.: Electromagnetic zero-point energy and radiation pressure for a rectangular cavity. Physica 56, 109 (1971)

    Article  ADS  Google Scholar 

  17. Lukosz, W.: Electromagnetic zero-point energy shift induced by conducting closed surfaces. Z. Phys. 258, 99 (1973)

    Article  ADS  Google Scholar 

  18. Lukosz, W.: Electromagnetic zero-point energy shift induced by conducting surfaces. II. The infinite wedge and the rectangular cavity. Z. Phys. 262, 327 (1973)

    Article  ADS  Google Scholar 

  19. Ambjørn, J., Wolfram, S.: Properties of the vacuum. I. Mechanical and thermodynamic. Ann. Phys. (N.Y.) 147, 1 (1983)

    Article  ADS  Google Scholar 

  20. Balian, R., Duplantier, B.: Electromagnetic waves near perfect conductors. II. Casimir effect. Ann. Phys. (N.Y.) 112, 165 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  21. Bernasconi, F., Graf, G.M., Hasler, D.: The heat kernel expansion for the electromagnetic field in a cavity. Ann. Henri Poincaré 4, 1001 (2003). arXiv:math-ph/0302035

    Google Scholar 

  22. Fulling, S.A., Milton, K.A., Parashar, P., Romeo, A., Shajesh, K.V., Wagner, J.: How does Casimir energy fall?. Phys. Rev. D 76, 025004 (2007). arXiv:hep-th/0702091

    Google Scholar 

  23. Milton, K.A., Parashar, P., Shajesh, K.V., Wagner, J.: How does Casimir energy fall? II. Gravitational acceleration of quantum vacuum energy. J. Phys. A 40, 10935 (2007). [hep-th]]

    Google Scholar 

  24. Milton, K.A., Wagner, J.: Exact Casimir Interaction Between Semitransparent Spheres and Cylinders. Phys. Rev. D 77, 045005 (2008). [arXiv:0711.0774 [hep-th]]

    Google Scholar 

  25. Milton, K.A., Wagner, J.: Multiple Scattering Methods in Casimir Calculations. J. Phys. A 41, 155402 (2008). [hep-th]]

    Google Scholar 

  26. Wagner, J., Milton, K.A., Parashar, P.: Weak Coupling Casimir Energies for Finite Plate Configurations. J. Phys. Conf. Ser. 161, 012022 (2009). [arXiv:0811.2442 [hep-th]]

    Google Scholar 

  27. DeRaad, L.L. Jr., Milton, K.A.: Casimir Selfstress On A Perfectly Conducting Cylindrical Shell. Ann. Phys. (N.Y.) 136, 229 (1981)

    Article  ADS  Google Scholar 

  28. Bender, C.M., Milton, K.A.: Casimir effect for a D-dimensional sphere. Phys. Rev. D 50, 6547 (1994). arXiv:hep-th/9406048

    Google Scholar 

  29. Gosdzinsky, P., Romeo, A.: Energy of the vacuum with a perfectly conducting and infinite cylindrical surface. Phys. Lett. B 441, 265 (1998). arXiv:hep-th/9809199

    Google Scholar 

  30. Brevik, I., Marachevsky, V.N., Milton, K.A.: Identity of the van der Waals force and the Casimir effect and the irrelevance of these phenomena to sonoluminescence. Phys. Rev. Lett. 82, 3948 (1999). arXiv:hep-th/9810062

    Google Scholar 

  31. Cavero-Peláez, I., Milton, K.A.: Casimir energy for a dielectric cylinder. Ann. Phys. (N.Y.) 320, 108 (2005). arXiv:hep-th/0412135

    Google Scholar 

  32. Klich, I.: Casimir’s energy of a conducting sphere and of a dilute dielectric ball. Phys. Rev. D 61, 025004 (2000). arXiv:hep-th/9908101

    Google Scholar 

  33. Milton, K.A., Nesterenko, A.V., Nesterenko, V.V.: Mode-by-mode summation for the zero point electromagnetic energy of an infinite cylinder. Phys. Rev. D 59, 105009 (1999)

    Article  ADS  Google Scholar 

  34. Kitson, A.R., Signal, A.I.: Zero-point energy in spheroidal geometries. J. Phys. A 39, 6473 (2006). arXiv:hep-th/0511048

    Google Scholar 

  35. Kitson, A.R., Romeo, A.: Perturbative zero-point energy for a cylinder of elliptical section. Phys. Rev. D 74, 085024 (2006). arXiv:hep-th/0607206

    Google Scholar 

  36. Milton, K.A.: Calculating Casimir energies in renormalizable quantum field theory. Phys. Rev. D 68, 065020 (2003). arXiv:hep-th/0210081.

    Google Scholar 

  37. Cavero-Peláez, I., Milton, K.A., Kirsten, K.: Local and global Casimir energies for a semitransparent cylindrical shell. J. Phys. A 40, 3607 (2007). arXiv:hep-th/0607154

    Google Scholar 

  38. Milton, K.A.: The Casimir Effect: Physical Manifestations of Zero-Point Energy. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  39. Bordag, M., Hennig, D., Robaschik, D.: Vacuum energy in quantum field theory with external potentials concentrated on planes. J. Phys. A 25, 4483 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  40. Bordag, M., Kirsten, K., Vassilevich, D.: Ground state energy for a penetrable sphere and for a dielectric ball. Phys. Rev. D 59, 085011 (1999). arXiv:hep-th/9811015

    Google Scholar 

  41. Graham, N., Jaffe, R.L., Weigel, H.: Casimir effects in renormalizable quantum field theories. Int. J. Mod. Phys. A 17, 846 (2002). arXiv:hep-th/0201148

    Google Scholar 

  42. Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Scandurra, M., Weigel, H.: Calculating vacuum energies in renormalizable quantum field theories: a new approach to the Casimir problem. Nucl. Phys. B 645, 49 (2002). arXiv:hep-th/0207120

    Google Scholar 

  43. Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Scandurra, M., Weigel, H.: Casimir energies in light of quantum field theory. Phys. Lett. B 572, 196 (2003). arXiv:hep-th/0207205

    Google Scholar 

  44. Graham, N., Jaffe, R.L., Khemani, V., Quandt, M., Scandurra, M., Weigel, H.: The Dirichlet Casimir problem. Nucl. Phys. B 677, 379 (2004). arXiv:hep-th/0309130

    Google Scholar 

  45. Milton, K.A.: Casimir energies and pressures for delta-function potentials. J. Phys. A 37, 6391 (2004). arXiv:hep-th/0401090

    Google Scholar 

  46. Milton, K.A.: The Casimir effect: Recent controversies and progress. J. Phys. A 37, R209 (2004). arXiv:hep-th/0406024

    Google Scholar 

  47. Kantowski, R., Milton, K.A.: Scalar Casimir energies in M 4 Ă— SN for even N. Phys. Rev. D 35, 549 (1987)

    Article  ADS  Google Scholar 

  48. Brevik, I., Jensen, B., Milton, K.A.: Comment on "Casimir energy for spherical boundaries". Phys. Rev. D 64, 088701 (2001). arXiv:hep-th/0004041

    Google Scholar 

  49. Weigel H.: Dirichlet spheres in continuum quantum field theory. In: Milton, K.A. (ed.) Proceedings of the 6th Workshop on Quantum Field Theory Under the Influence of External Conditions, p. 195, (Rinton Press, Princeton, N.J., 2004) arXiv:hep-th/0310301

    Google Scholar 

  50. Fulling, S.A.: Systematics of the relationship between vacuum energy calculations and heat kernel coefficients. J. Phys. A 36, 6857 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Graham, N., Olum, K.D.: Negative energy densities in quantum field theory with a background potential. Phys. Rev. D 67, 085014 (2003). arXiv:quant-ph/0302117

    Google Scholar 

  52. Callan, C.G. Jr., Coleman, S., Jackiw, R.: A new improved energy-momentum tensor. Ann. Phys. (N.Y.) 59, 42 (1970)

    Google Scholar 

  53. Olum, K.D., Graham, N.: Static negative energies near a domain wall. Phys. Lett. B 554, 175 (2003). arXiv:gr-qc/0205134

    Google Scholar 

  54. Romeo, A., Saharian, A.A.: Casimir effect for scalar fields under Robin boundary conditions on plates. J. Phys. A 35, 1297 (2002). arXiv:hep-th/0007242

    Google Scholar 

  55. Romeo, A., Saharian, A.A.: Vacuum densities and zero-point energy for fields obeying Robin conditions on cylindrical surfaces. Phys. Rev. D 63, 105019 (2001). arXiv:hepth/0101155

    Google Scholar 

  56. Saharian, A.A.: Scalar Casimir effect for D-dimensional spherically symmetric Robin boundaries. Phys. Rev. D 6, 125007 (2001). arXiv:hep-th/0012185

    Google Scholar 

  57. Saharian, A.A.: On the energy-momentum tensor for a scalar field on manifolds with boundaries. Phys. Rev. D 69, 085005 (2004). arXiv:hep-th/0308108

    Google Scholar 

  58. Brown, L.S., Maclay, G.J.: Vacuum stress between conducting plates: An Image solution. Phys. Rev. 184, 1272 (1969)

    Article  ADS  Google Scholar 

  59. Actor, A.A., Bender, I.: Boundaries immersed in a scalar quantum field. Fortsch. Phys. 44, 281 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  60. Dowker, J.S., Kennedy, G.: Finite temperature and boundary effects in static space-times. J. Phys. A 11, 895 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  61. Deutsch, D., Candelas, P.: Boundary effects in quantum field theory. Phys. Rev. D 20, 3063 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  62. Brevik, I., Lygren, M.: Casimir effect for a perfectly conducting wedge. Ann. Phys. (N.Y.) 251, 157 (1996)

    Article  ADS  Google Scholar 

  63. Sopova, V., Ford, L.H.: The electromagnetic field stress tensor near dielectric half-spaces. In: Milton, K.A. (ed.) Proceedings of the 6th Workshop on Quantum Field Theory Under the Influence of External Conditions, p.140. Rinton Press, Princeton, NJ, (2004)

    Google Scholar 

  64. Sopova, V., Ford, L.H.: The Electromagnetic Field Stress Tensor between Dielectric Half-Spaces. Phys. Rev. D 72, 033001 (2005). arXiv:quant-ph/0504143

    Google Scholar 

  65. Graham, N.: Do casimir energies obey general relativity energy conditions?. In: Milton, K.A. (ed.) Proceedings of the 6th Workshop on Quantum Field Theory Under the Influence of External Conditions, Rinton Press, Princeton, NJ (2004)

    Google Scholar 

  66. Graham, N., Olum, K.D.: Plate with a hole obeys the averaged null energy condition. Phys. Rev. D 72, 025013 (2005). arXiv:hep-th/0506136

    Google Scholar 

  67. Milton, K.A.: Semiclassical electron models: Casimir self-stress in dielectric and conducting balls. Ann. Phys. (N.Y.) 127, 49 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  68. Milton, K.A., DeRaad, L.L. Jr., Schwinger, J.: Casimir self-stress on a perfectly conducting spherical shell. Ann. Phys. (N.Y.) 115, 388 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  69. Candelas, P.: Vacuum energy in the presence of dielectric and conducting surfaces. Ann. Phys. (N.Y.) 143, 241 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  70. Candelas, P.: Vacuum energy in the bag model. Ann. Phys. (N.Y.) 167, 257 (1986)

    Article  ADS  Google Scholar 

  71. Bordag, M., Mohideen, U., Mostepanenko, V.M.: New developments in the Casimir effect. Phys. Rept. 353, 1 (2001). arXiv:quant-ph/0106045

    Google Scholar 

  72. Sen, S.: Geometrical determination of the sign of the Casimir force in two spatial dimensions. Phys. Rev. D 24, 869 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  73. Sen, S.: A calculation of the Casimir force on a circular boundary. J. Math. Phys. 22, 2968 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  74. Cavero-Peláez, I., Milton, K.A., Wagner, J.: Local casimir energies for a thin spherical shell. Phys. Rev. D 73, 085004 (2006). arXiv:hep-th/0508001

    Google Scholar 

  75. Barton, G.: Casimir energies of spherical plasma shells. J. Phys. A 37, 1011 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  76. Scandurra, M.: The ground state energy of a massive scalar field in the background of a semi-transparent spherical shell. J. Phys. A 32, 5679 (1999). arXiv:hep-th/9811164

    Google Scholar 

  77. Bender, C.M., Milton, K.A.: Scalar Casimir effect for a D-dimensional sphere. Phys. Rev. D 50, 6547 (1994). arXiv:hep-th/9406048

    Google Scholar 

  78. Leseduarte, S., Romeo, A.: Complete zeta-function approach to the electromagnetic Casimir effect for a sphere. Europhys. Lett. 34, 79 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  79. Leseduarte, S., Romeo, A.: Complete zeta-function approach to the electromagnetic Casimir effect for spheres and circles. Ann. Phys. (N.Y.) 250, 448 (1996). arXiv:hepth/9605022

    Google Scholar 

  80. Klich, I.: Casimir energy of a conducting sphere and of a dilute dielectric ball. Phys. Rev. D 61, 025004 (2000). arXiv:hep-th/9908101

    Google Scholar 

  81. Bordag, M., Vassilevich, D.V.: Nonsmooth backgrounds in quantum field theory. Phys. Rev. D 70, 045003 (2004). arXiv:hep-th/0404069

    Google Scholar 

  82. Milton, K.A.: Zero-point energy in bag models. Phys. Rev. D 22, 1441 (1980)

    Article  ADS  Google Scholar 

  83. Milton, K.A.: Zero-point energy of confined fermions. Phys. Rev. D 22, 1444 (1980)

    Article  ADS  Google Scholar 

  84. Milton, K.A.: Vector Casimir effect for a D-dimensional sphere. Phys. Rev. D 55, 4940 (1997). arXiv:hep-th/9611078

    Google Scholar 

  85. Leseduarte, S., Romeo, A.: Influence of a magnetic fluxon on the vacuum energy of quantum fields confined by a bag. Commun. Math. Phys. 193, 317 (1998). arXiv:hep-th/9612116

    Google Scholar 

  86. Davies, B.: Quantum electromagnetic zero-point energy of a conducting spherical shell. J. Math. Phys. 13, 1324 (1972)

    Article  ADS  Google Scholar 

  87. Schwartz-Perlov, D., Olum, K.D.: Energy conditions for a generally coupled scalar field outside a reflecting sphere. Phys. Rev. D 72, 065013 (2005). arXiv:hep-th/0507013

    Google Scholar 

  88. Scandurra, M.: Vacuum energy of a massive scalar field in the presence of a semi-transparent cylinder. J. Phys. A 33, 5707 (2000). arXiv:hep-th/0004051

    Google Scholar 

  89. Gilkey, P.B., Kirsten, K., Vassilevich, D.V.: Heat trace asymptotics with transmittal boundary conditions and quantum brane-world scenario. Nucl. Phys. B 601, 125 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. Nesterenko, V.V., Pirozhenko, I.G.: Spectral zeta functions for a cyllinder and a circle. J. Math. Phys. 41, 4521 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  91. Kennedy, G., Critchley, R., Dowker, J.S.: Finite temperature field theory with boundaries: stress tensor and surface action renormalization. Ann. Phys. (N.Y.) 125, 346 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  92. Romeo, A., Saharian, A.A.: Casimir effect for scalar fields under Robin boundary conditions on plates. J. Phys. A 35, 1297 (2002). arXiv:hep-th/0007242

    Google Scholar 

  93. Fulling, S.A., Kaplan, L., Kirsten, K., Liu, Z.H., Milton, K.A.: Vacuum stress and closed paths in rectangles, pistons, and pistols. J. Phys. A 42, 155402 (2009). arXiv:0806.2468[hep-th]

    Google Scholar 

  94. Born, M.: The theory of the rigid electron in the kinematics of the relativity principle. Ann. Phys. (Leipzig) 30, 1 (1909)

    ADS  MATH  Google Scholar 

  95. Calloni, E., Di Fiore, L., Esposito, G., Milano, L., Rosa, L.: Vacuum fluctuation force on a rigid Casimir cavity in a gravitational field. Phys. Lett. A 297, 328 (2002)

    Article  ADS  MATH  Google Scholar 

  96. Karim, M., Bokhari, A.H., Ahmedov, B.J.: The Casimir force in the Schwarzchild metric. Class. Quant. Grav. 17, 2459 (2000)

    Article  ADS  MATH  Google Scholar 

  97. Caldwell, R.R.: Gravitation of the Casimir effect and the cosmological non-constant. arXiv:astro-ph/0209312

    Google Scholar 

  98. Sorge, F.: Casimir effect in a weak gravitational field. Class. Quant. Grav. 22, 5109 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  99. Bimonte, G., Calloni, E., Esposito, G., Rosa, L.: Energy-momentum tensor for a Casimir apparatus in a weak gravitational field. Phys. Rev. D 74, 085011 (2006)

    Article  ADS  Google Scholar 

  100. Bimonte, G., Esposito, G., Rosa, L.: From Rindler space to the electromagnetic energy-momentum tensor of a Casimir apparatus in a weak gravitational field. Phys. Rev. D 78, 024010 (2008). arXiv:0804.2839 [hep-th]

    Google Scholar 

  101. Saharian, A.A., Davtyan, R.S., Yeranyan, A.H.: Casimir energy in the Fulling-Rindler vacuum. Phys. Rev. D 69, 085002 (2004). arXiv:hep-th/0307163

    Google Scholar 

  102. Jaekel. M.T., Reynaud, S.: Mass, inertia and gravitation. arXiv:0812.3936 [gr-qc]

    Google Scholar 

  103. Estrada, R., Fulling, S.A., Liu, Z., Kaplan, L., Kirsten, K., Milton, K.A.: Vacuum stress-energy density and its gravitational implications. J. Phys. A 41, 164055 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  104. Actor, A.A.: Scalar quantum fields confined by rectangular boundaries. Fortsch. Phys. 43, 141 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  105. Schaden, M.: Semiclassical electromagnetic Casimir self-energies. arXiv:hep-th/0604119

    Google Scholar 

  106. Gies, H., Klingmuller, K.: Casimir edge effects. Phys. Rev. Lett. 97, 220405 (2006). arXiv:quant-ph/0606235

    Google Scholar 

  107. Gies, H., Klingmuller, K.: Worldline algorithms for Casimir configurations Phys. Rev. D 74, 045002 (2006). arXiv:quant-ph/0605141

    Google Scholar 

  108. Gies, H., Klingmuller, K.: Casimir effect for curved geometries: PFA validity limits. Phys. Rev. Lett. 96, 220401 (2006). arXiv:quant-ph/0601094

    Google Scholar 

  109. Jaffe, R.L., Scardicchio, A.: The casimir effect and geometric optics. Phys. Rev. Lett. 92, 070402 (2004). arXiv:quant-ph/0310194

    Google Scholar 

  110. Scardicchio, A., Jaffe, R.L.: Casimir effects: an optical approach I. foundations and examples. Nucl. Phys. B 704, 552 (2005). arXiv:quant-ph/0406041

    Google Scholar 

  111. Schroeder, O., Scardicchio, A., Jaffe, R.L.: The Casimir energy for a hyperboloid facing a plate in the optical approximation. Phys. Rev. A 72, 012105 (2005). arXiv:hep-th/0412263

    Google Scholar 

  112. Graham, N., Shpunt, A., Emig, T., Rahi, S.J., Jaffe, R.L., Kardar, M.: Casimir force at a knife’s edge. Phys. Rev. D 81, 061701 (2010). arXiv:0910.4649 [quant-ph]

    Google Scholar 

  113. Rahi, S.J., Rodriguez, A.W., Emig, T., Jaffe, R.L., Johnson, S.G., Kardar, M.: Nonmonotonic effects of parallel sidewalls on Casimir forces between cylinders. Phys. Rev. A 77, 030101 (2008). arXiv:0711.1987 [cond-mat.stat-mech]

    Google Scholar 

  114. Farhi, E., Graham, N., Haagensen, P., Jaffe, R.L.: Finite quantum fluctuations about static field configurations. Phys. Lett. B 427, 334 (1998). arXiv:hep-th/9802015

    Google Scholar 

  115. Graham, N., Jaffe, R.L.: Energy, central charge, and the BPS bound for 1+1 dimensional supersymmetric solitons. Nucl. Phys. B 544, 432 (1999). arXiv:hep-th/9808140

    Google Scholar 

  116. Cavero-Peláez, I., Guilarte, J.M.: Local analysis of the sine-Gordon kink quantum fluctuations. to appear In: Milton, K. A., Bordag, M. (eds.) Proceedings of the 9th Conference on Quantum Field Theory Under the Influence of External Conditions, World Scientific, Singapore (2010). arXiv:0911.4450 [hep-th]

    Google Scholar 

Download references

Acknowledgements

I thank the US Department of Energy and the US National Science Foundation for partial support of this work. I thank my many collaborators, including Carl Bender, Iver Brevik, Inés Cavero-Peláez, Lester DeRaad, Steve Fulling, Ron Kantowski, Klaus Kirsten, Vladimir Nesterenko, Prachi Parashar, August Romeo, K.V. Shajesh, and Jef Wagner, for their contributions to the work described here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimball A. Milton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Milton, K.A. (2011). Local and Global Casimir Energies: Divergences, Renormalization, and the Coupling to Gravity. In: Dalvit, D., Milonni, P., Roberts, D., da Rosa, F. (eds) Casimir Physics. Lecture Notes in Physics, vol 834. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20288-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20288-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20287-2

  • Online ISBN: 978-3-642-20288-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics