Skip to main content

Soil Biota, Soil Health and Global Change

  • Chapter
  • First Online:
Soil Health and Climate Change

Part of the book series: Soil Biology ((SOILBIOL,volume 29))

Abstract

The management of soil health under various global change scenarios requires clear iteration of the links between soil health and soil biota and the elucidation of the multitude of ways in which soil biota contributes to and is impacted by global change. Because of the enormity of the topic, the major focus of this chapter will be on the most functionally and structurally diverse component of the soil biota, the micro-organisms. It details how various members of the soil microbial community produce and consume greenhouse gases and in turn how these communities are impacted by elevated CO2 and temperature. It also highlights how emergent biotechnologies will assist in identifying the key microbial players involved in critical ecosystem processes, and how global change scenarios are likely to impact on the underpinning microbial communities. Knowledge of soil microbial functional responses will inform land-use and soil management strategies as part of a global effort to adapt to global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht R, Périssol C, Ruaudel F, Petit JL, Terrom G (2010) Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manage 30:764–770

    CAS  Google Scholar 

  • Alperin MJ, Hoehler TM (2009) Anaerobic methane oxidation by archaea/sulfate-reducing bacteria aggregates: 1. Thermodynamic and physical constraints. Am J Sci 309:869–957

    CAS  Google Scholar 

  • Andert J, Borjennsen G, Hallin S (2009) Response of microbial communities involved in the emission of greenhouse gases from peat soil to season and environment. In: Janssen J (ed) BAGECO-10, Bacterial genetics and ecology-coexisting on a changing planet. Uppsala Universitet

    Google Scholar 

  • Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the [delta]13C of soil-respired CO2. Soil Biol Biochem 32:699–706

    CAS  Google Scholar 

  • Austin EE, Castro HF, Sides KE, Schadt CW, Classen AT (2009) Assessment of 10 years of CO2 fumigation on soil microbial communities and function in a sweetgum plantation. Soil Biol Biochem 41:514–520

    CAS  Google Scholar 

  • Baker K, Langenheder S, Nicol G, Ricketts D, Killham K, Campbell C, Prosser J (2009) Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies. Soil Biol Biochem 41:2292–2298

    CAS  Google Scholar 

  • Barcenas-Moreno G, Gomez-Brandon M, Rousk J, Baath E (2009) Adaptation of soil microbial communities to temperature: comparison of fungi and bacteria in a laboratory experiment. Global Change Biol 15:2950–2957

    Google Scholar 

  • Bardgett RD, Usher MB, Hopkins DW (2005) Biological Diversity and Function in Soils. Cambridge University Press, Cambridge

    Google Scholar 

  • Barnard R, Leadley PW, Lensi R, Barthes L (2005) Plant, soil microbial and soil inorganic nitrogen responses to elevated CO2: a study in microcosms of Holcus lanatus. Acta Oecologica 27:171–178

    Google Scholar 

  • Beerling D, Berner RA, Mackenzie FT, Harfoot MB, Pyle JA (2009) Methane and the CH4 related greenhouse effect over the past 400 million years. Am J Sci 309:97–113

    CAS  Google Scholar 

  • Billings SA, Ziegler SE (2005) Linking microbial activity and soil organic matter transformations in forest soils under elevated CO2. Global Change Biol 11:203–212

    Google Scholar 

  • Blagodatskaya EV, Blagodatsky SA, Anderson TH, Kuzyakov Y (2007) Priming effects in Chernozem induced by glucose and N in relation to microbial growth strategies. Appl Soil Ecol 37:95–105

    Google Scholar 

  • Blagodatsky S, Blagodatskaya E, Yuyukina T, Kuzyakov Y (2010) Model of apparent and real priming effects: linking microbial activity with soil organic matter decomposition. Soil Biol Biochem 42(8):1275–1283

    CAS  Google Scholar 

  • Boschker HTS, Nold SC, Wellsbury P, Bos D, de Graaf W, Pel R, Parkes RJ, Cappenberg TE (1998) Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature 392:801–805

    CAS  Google Scholar 

  • Briones MJI, Garnett MH, Ineson P (2010) Soil biology and warming play a key role in the release of old C from organic soils. Soil Biol Biochem 42:960–967

    CAS  Google Scholar 

  • Bünemann EK, Schwenke GD, Van Zwieten L (2006) Impact of agricultural inputs on soil organisms – a review. Aust J Soil Res 44:379–406

    Google Scholar 

  • Cavicchioli R, DeMaere M, Thomas T (2007) Metagenomic studies reveal the critical and wide-ranging ecological importance of uncultivated archaea: the role of ammonia oxidizers. Bioessays 29:11–14

    PubMed  CAS  Google Scholar 

  • Cebron A, Bodrossy L, Stralis-Pavese N, Singer AC, Thompson IP, Prosser JI, Murrell JC (2007) Nutrient amendments in soil DNA stable isotope probing experiments reduce the observed methanotroph diversity. Appl Environ Microbiol 73:798–807

    PubMed  CAS  Google Scholar 

  • Chapin SF III, McFarland J, McGuire AD, Euskirchen ES, Ruess RW, Kielland K (2009) The changing global carbon cycle: linking plant and soil carbon dynamics to global consequences. J Ecol 97:840–850

    CAS  Google Scholar 

  • Chen Y, Dumont MG, Neufeld JD, Bodrossy L, Stralis-Pavese N, McNamara NP, Ostle N, Briones MJI, Murrell JC (2008) Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands. Environ Microbiol 10:2609–2622

    PubMed  CAS  Google Scholar 

  • Chen Y, Boden R, Hillebrand D, Moussard H, Baciu M, Lu Y, Murrell JC (2009) Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. ISME J 3:1093–1104

    PubMed  CAS  Google Scholar 

  • Chen D, Suter HC, Islam A, Edis R (2010) Influence of nitrification inhibitors on nitrification and nitrous oxide (N2O) emission from a clay loam soil fertilized with urea. Soil Biol Biochem 42:660–664

    CAS  Google Scholar 

  • Clark NM, Rillig MC, Nowak RS (2009) Arbuscular mycorrhizal fungal abundance in the Mojave Desert: seasonal dynamics and impacts of elevated CO2. J Arid Environ 73:834–843

    Google Scholar 

  • Colloff MJ, Wakelin SA, Gomez D, Rogers SL (2008) Detection of nitrogen cycle genes in soils for measuring the effects of changes in land use and management. Soil Biol Biochem 40:1637–1645

    CAS  Google Scholar 

  • Coûteaux M-M, Bolger T (2000) Interactions between atmospheric CO2 enrichment and soil fauna. Plant Soil 224:123–134

    Google Scholar 

  • Cunningham AB, Gerlach R, Spangler L, Mitchell AC (2009) Microbially enhanced geologic containment of sequestered supercritical CO2. Energy Procedia 1:3245–3252

    CAS  Google Scholar 

  • Cuttle SP (2008) Impacts of pastoral grazing on soil quality. In: McDowell RW (ed) Environmental Impacts of Pasture-based Farming’. CABI, Wallingford

    Google Scholar 

  • Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199–204

    PubMed  CAS  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478

    PubMed  CAS  Google Scholar 

  • Davidson E, Nepstad D, Yoko Ishida F, Brando P (2008) Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biol 14:2582–2590

    Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    CAS  Google Scholar 

  • Doran JW, Sarrantonio M, Liebig M (ed) (1996) Soil health and sustainability. Academic Press: San Diego, 1–54 pp

    Google Scholar 

  • Drigo B, Kowalchuk GA, Yergeau E, Martijn Bezemer T, Boschker HTS, Van Veen JA (2007) Impact of elevated carbon dioxide on the rhizosphere communities of Carex arenaria and Festuca rubra. Global Change Biol 13:1365–2486

    Google Scholar 

  • Drigo B, van Veen JA, Kowalchuk GA (2009) Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO2. ISME J 3:1204–1217

    PubMed  CAS  Google Scholar 

  • Dumont MG, Murrell JC (2005) Stable isotope probing linking microbial identify to function. Nat Rev Micro 3:499–504

    CAS  Google Scholar 

  • Dumont MG, Neufeld JD, Murrell JC (2006) Isotopes as tools for microbial ecologists. Curr Opin Biotechnol 17:57–58

    CAS  Google Scholar 

  • Edmeades DF (2004) Nitrification and urease inhibitors: a review of the national and international literature on their effects on nitrate leaching, greenhouse gas emissions and ammonia volatilisation from temperate legume-based systems. Environment Waikato Technical Report 2004/22. Environment Waikato, Hamilton. ISSN: 1172–4005

    Google Scholar 

  • EU (2002) Towards a thematic strategy for soil protection. The Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions, Brussels

    Google Scholar 

  • Falkowski P, Fenchel T, deLong E (2008) The microbial engines that drive earth’s biogeochemical cycles. Science 320:1034–1039

    PubMed  CAS  Google Scholar 

  • Falloon P, Smith P, Betts R, Jones C, Smith J, Hemming D, Challinor A (2009) Carbon Sequestration and Greenhouse Gas Fluxes from Cropland Soils- Climate Opportunities and Threats. Springer, Berlin

    Google Scholar 

  • Faulwetter JL, Gagnon V, Sundberg C, Chazarenc F, Burr MD, Brisson J, Camper AK, Stein OR (2009) Microbial processes influencing performance of treatment wetlands: a review. Ecol Eng 35:987–1004

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Feng X, Simpson MJ (2009) Temperature and substrate controls on microbial phospholipid fatty acid composition during incubation of grassland soils contrasting in organic matter quality. Soil Biol Biochem 41:804–812

    CAS  Google Scholar 

  • Ferrer M, Beloqui A, Timmis KN, Golyshin PN (2009) Metagenomics for mining new genetic resources of microbial communities. J Mol Microbiol Biotechnol 35:265–274

    Google Scholar 

  • Freeman C, Baxter R, Farrar JF, Jones SE, Plum S, Ashendon TW, Stirling C (1998) Could competition between plants and microbes regulate plant nutrition and atmospheric CO2 concentrations? Sci Total Environ 220:181–184

    CAS  Google Scholar 

  • Friedrich MW (2006) Stable-isotope probing of DNA: insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Curr Opin Biotechnol 17:59–66

    PubMed  CAS  Google Scholar 

  • Gallagher E, McGuinness L, Phelps C, Young LY, Kerkhof LJ (2005) 13C-carrier DNA shortens the incubation time needed to detect benzoate-utilizing denitrifying bacteria by stable-isotope probing. Appl Environ Microbiol 71:5192–5196

    PubMed  CAS  Google Scholar 

  • Gatson KJ, Spicer JI (2004) Biodiversity- An Introduction. Blackwell Publishing, Cornwall

    Google Scholar 

  • Granli T, Bockman OC (1994) Nitrous oxide from agriculture. Norw J Agric Sci 12:7–127

    Google Scholar 

  • Green SJ, Prakash O et al (2010) Denitrifying bacteria isolated from terrestrial subsurface sediments exposed to mixed-waste contamination. Appl Environ Microbiol 76:3244–3254

    PubMed  CAS  Google Scholar 

  • Gu C, Maggi F et al (2009) Aqueous and gaseous nitrogen losses induced by fertilizer application. J Geophys Res 114:G01006

    Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Gooman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for science. Chem Biol 5:245–249

    Google Scholar 

  • Handelsman J, Tiedje L et al (2007) The New Science of Metagenomics. Revealing the Secrets of Our Microbial Planet. National Academy of Sciences, Washington

    Google Scholar 

  • Hartley IP, Heinemeyer A, Evans SP, Ineson P (2007) The effect of soil warming on bulk soil vs. rhizosphere respiration. Global Change Biol 13:2654–2667

    Google Scholar 

  • Hawkesworth DL (2001) The magnitude of fungal diversity: the 1·5 million species estimate revisited. Mycol Res 105:1422–1432

    Google Scholar 

  • Hernández D, Hobbie S (2010) The effects of substrate composition, quantity, and diversity on microbial activity. Plant and Soil 335:397–397

    Google Scholar 

  • Herrmann AM, Ritz K, Nunan N, Clode PL, Pett-Ridge J, Kilburn MR, Murphy DV, O’Donnell AG, Stockdale EA (2007) Nano-scale secondary ion mass spectrometry – a new analytical tool in biogeochemistry and soil ecology: a review article. Soil Biol Biochem 39:1835–1850

    CAS  Google Scholar 

  • Hery M, Singer A, Kumaresan D, Bodrossey L, Stralis-Pavese N, Prosser JI, Thompsen IP, Murrell JC (2007) Effect of earthworms on the community structure of active methanotrophic bacteria in a landfill cover soil. ISME J 2:92–104

    PubMed  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) (2007) Climate change: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Hu S, Firestone MK, Chapin FS (1999) Soil microbial feedbacks to atmospheric CO2 enrichment. Trends Ecol Evol 14:433–437

    PubMed  Google Scholar 

  • Insam H, Bååth E, Berreck M, FrostegÃ¥rd Ã…, Gerzabek MH, Kraft A, Schinner F, Schweiger P, Tschuggnall G (1999) Responses of the soil microbiota to elevated CO2 in an artificial tropical ecosystem. J Microbiol Meth 36:45–54

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. In: IPoC Change (ed). Cambridge University Press, Cambridge

    Google Scholar 

  • Kalyuzhnaya MG, Lapidus A (2008) High-resolution metagenomics targets specific functional types in complex microbial communities. Nat Biotech 26:1029–1034

    CAS  Google Scholar 

  • Kandeler E, Mosier AR, Morgan JA, Milchunas DG, King JY, Rudolph S, Tscherko D (2008) Transient elevation of carbon dioxide modifies the microbial community composition in a semi-arid grassland. Soil Biol Biochem 40:162–171

    CAS  Google Scholar 

  • Kanerva T, Palojärvi A, Rämö K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510

    CAS  Google Scholar 

  • Kang H, Kim S-Y, Fenner N, Freeman C (2005) Shifts of soil enzyme activities in wetlands exposed to elevated CO2. Sci Total Environ 337:207–212

    PubMed  CAS  Google Scholar 

  • Keller M, Zengler K (2004) Tapping into microbial diversity. Nat Rev Micro 2:141–150

    CAS  Google Scholar 

  • Kibblewhite M, Ritz K, Swift M (2008) Soil health in agricultural systems. Philos Trans R Soc Lond B Biol Sci 362:685–701

    Google Scholar 

  • Kirschbaum MUF (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    CAS  Google Scholar 

  • Kohler J, Caravaca F, del Mar AM, Roldán A (2009) Elevated CO2 increases the effect of an arbuscular mycorrhizal fungus and a plant-growth-promoting rhizobacterium on structural stability of a semiarid agricultural soil under drought conditions. Soil Biol Biochem 41:1710–1716

    CAS  Google Scholar 

  • Krüger M, West J et al (2009) Ecosystem effects of elevated CO2 concentrations on microbial populations at a terrestrial CO2 vent at Laacher See, Germany. Energy Procedia 1:1933–1939

    Google Scholar 

  • Kuzyakov Y (2010) Priming effects: interactions between living and dead organic matter. Soil Biol Biochem 42:1363–1371

    CAS  Google Scholar 

  • Lal R (2009) Soils and world food security. Soil Till Res 102:1–4

    Google Scholar 

  • Lavelle P (1996) Diversity of soil fauna and ecosystem function. Biol Int 33:3–16

    Google Scholar 

  • Li Q, Xu C, Liang W, Zhong S, Zheng X, Zhu J (2009) Residue incorporation and N fertilization affect the response of soil nematodes to the elevated CO2 in a Chinese wheat field. Soil Biol Biochem 41:1497–1503

    CAS  Google Scholar 

  • Lin Y, Kong HN, Wang RY, Li CJ, Yan L, He YL (2008) Characteristic and prospects of heterotrophic nitrification. Huanjing Kexue/Environ Sci 29:3291–3296

    CAS  Google Scholar 

  • Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann NY Acad Sci 1125:171–189

    PubMed  CAS  Google Scholar 

  • Liu B, Mørkved PT, FrostegÃ¥rd Ã…, Bakken LR (2010) Denitrification gene pools, transcription and kinetics of NO, N2O and N2 production as affected by soil pH. FEMS Microbiol Ecol 72:407–417

    PubMed  CAS  Google Scholar 

  • Ma BL, Wu TY, Tremblay N, Deen W, Morrison MJ, Mclaughlin NB, Gregorich EG, Stewart G (2010) Nitrous oxide fluxes from corn fields: on-farm assessment of the amount and timing of nitrogen fertilizer. Global Change Biol 16:156–170

    Google Scholar 

  • Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J (2005) Mitigating nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere 58:141–147

    PubMed  CAS  Google Scholar 

  • Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    PubMed  CAS  Google Scholar 

  • Manter DK, Weir TL, Vivanco JM (2010) Sample pooling masks PCR-based estimates of soil microbial richness and community structure. Appl Environ Microbiol 76:2086–2090

    Google Scholar 

  • Marschner P, Kandeler E, Marschner B (2003) Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol Biochem 35:453–461

    CAS  Google Scholar 

  • McGuinn AF (1924) The action of dicyandiamide and guanyl urea sulfate on plant growth. Soil Sci Soc Am J 17:487–500

    CAS  Google Scholar 

  • Morales SE, Cosart T, Holben WE (2010) Bacterial gene abundances as indicators of greenhouse gas emission in soils. ISME J 4:799–808

    PubMed  CAS  Google Scholar 

  • Moscatelli MC, Lagomarsino A, Angelis PD, Grego S (2005) Seasonality of soil biological properties in a poplar plantation growing under elevated atmospheric CO2. Appl Soil Ecol 30:162–173

    Google Scholar 

  • Novis P, Whitehead D, Gregorich EG, Hunt A, Sparrow A, Hopkins D, Elberling B, Greenfield L (2007) Annual carbon fixation in terrestrial populations of Nostoc commune (Cyanobacteria) from an Antarctic dry valley is driven by temperature regime. Global Change Biol 13:1224–1237

    Google Scholar 

  • O’Callaghan M, Gerard EM, Carter PE, Lardner R, Sarathchandra U, Burch G, Ghani A, Bell N (2010) Effect of the nitrification inhibitor dicyandiamide (DCD) on microbial communities in a pasture soil amended with bovine urine. Soil Biol Biochem 42(9):1425–1436

    Google Scholar 

  • Okano Y, Hristova KR, Leutenegger CM, Jackson LE, Denison RF, Gebreyesus B, Lebauer D, Scow KM (2004) Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 70:1008–1016

    PubMed  CAS  Google Scholar 

  • Paul EA (ed) (2007) Soil microbiology, ecology and biochemistry. Elsevier, Burlington

    Google Scholar 

  • Perez-Piqueres A, Edel-Hermann V, Alabouvette C, Steinberg C (2006) Response of soil microbial communities to compost amendments. Soil Biol Biochem 38:460–470

    CAS  Google Scholar 

  • Phillips RL, Whalen SC, Schlesinger WH (2001) Response of soil methanotrophic activity to carbon dioxide enrichment in a North Carolina coniferous forest. Soil Biol Biochem 33:793–800

    CAS  Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298:156–159

    CAS  Google Scholar 

  • Prescott C (2010) Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 70:227–250

    Google Scholar 

  • Prosser JI (1986) Nitrification. IRL Press, Oxford

    Google Scholar 

  • Qiu Q, Noll M, Abraham W-R, Lu Y, Conrad R (2008) Applying stable isotope probing of phospholipid fatty acids and rRNA in a Chinese rice field to study activity and composition of the methanotrophic bacterial communities in situ. ISME J 2:602–614

    PubMed  CAS  Google Scholar 

  • Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    PubMed  CAS  Google Scholar 

  • Reth S, Hentschel K, Drösler M, Falge E (2005) DenNit – experimental analysis and modelling of soil N2O efflux in response on changes of soil water content, soil temperature, soil pH, nutrient availability and the time after rain event. Plant Soil 272:349–363

    CAS  Google Scholar 

  • Rinnan R, Johannes R, Tergeau T, Kowalchuk GA, Baath E (2009) Temperature adaptation of soil bacterial communities along an Antarctic climate gradient: predicting responses to climate warming. Global Change Biol 15:2615–2625

    Google Scholar 

  • Robinson SA (2009) Introduction: climate change biology at the ends of the Earth-International Polar year special issue. Global Change Biol 15:1615–1617

    Google Scholar 

  • Rønn R, Gavito M, Larsen J, Jakobsen I, Frederiksen H, Christensen S (2002) Response of free-living soil protozoa and microorganisms to elevated atmospheric CO2 and presence of mycorrhiza. Soil Biol Biochem 34:923–932

    Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    PubMed  CAS  Google Scholar 

  • Schortemeyer M, Hartwig UA, Hendrey GR, Sadowsky MJ (1996) Microbial community changes in the rhizospheres of white clover and perennial ryegrass exposed to free air carbon dioxide enrichment (FACE). Soil Biol Biochem 28:1717–1724

    CAS  Google Scholar 

  • Scow KM, Louise EJ (1997) Soil microbial communities and carbon flow in agroecosystems. In: Ecology in agriculture. Academic, San Diego, pp 367–413

    Google Scholar 

  • Siciliano SD, Ma WK, Ferguson S, Farrell RE (2009) Nitrifier dominance of Arctic soil nitrous oxide emissions arises due to fungal competition with denitrifiers for nitrate. Soil Biol Biochem 41:1104–1110

    CAS  Google Scholar 

  • Sinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ (2003) Soil microbial activity in a Liquidambar plantation unresponsive to CO2-driven increases in primary production. Appl Soil Ecol 24:263–271

    Google Scholar 

  • Skjemstad JO, Spouncer LR, Cowie B, Swift RS (2004) Calibration of the Rothamsted organic carbon turnover model (RothC ver. 26.3), using measurable soil organic carbon pools. Aust J Soil Res 42:79–88

    CAS  Google Scholar 

  • Torsvik V, ØvreÃ¥s L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Daae F (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    PubMed  CAS  Google Scholar 

  • Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16s rRNA gene. Curr Opin Microbiol 11:442–446

    PubMed  CAS  Google Scholar 

  • Urich T, Lanza A, Qi J, Huson DH, Schleper C, Schuster SC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS ONE 3:2527

    Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:651

    Google Scholar 

  • Vargas-García MC, Suárez-Estrella F, López MJ, Moreno J (2010) Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Manage 30:771–778

    Google Scholar 

  • Venter J, Remington K, Heidelberg J, Halpern AR, Rusch D, Eisen J, Wu D, Smith H (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    PubMed  CAS  Google Scholar 

  • Vincent WF (2010) Microbial ecosystem responses to rapid climate change in the Arctic. ISME J 4(9):1087–1090

    PubMed  Google Scholar 

  • Wagner M (2009) Unexplored key players in nitrification. In: Janssen J (ed) BAGECO-10, Bacterial genetics and ecology-coexisting on a changing planet. Uppsala Universitet

    Google Scholar 

  • Wakelin SA, Colloff MJ, Harvey PR, Marschner P, Gregg AL, Rogers SL (2007) The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS Microbiol Ecol 59:661–670

    PubMed  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to climate change. Microb Ecol 52:716–724

    PubMed  CAS  Google Scholar 

  • Wall DH, Fitter AH, Paul EA (eds) (2005) Biological diversity and function in soils. Developing new perspectives from advances in soil biodiversity research. Cambridge University Press, Dorset

    Google Scholar 

  • Warnecke F, Matthias H (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142:91–95

    PubMed  CAS  Google Scholar 

  • Watt MJ, Kirkegaard JA, Passioura JB (2006) Rhizosphere biology and crop productivity – a review. Aust J Soil Res 44:299–317

    Google Scholar 

  • Whitman W, Boone DR, Koga Y, JT K (2001) Taxonomy of methanogenic Archaea. Springer, Berlin

    Google Scholar 

  • Williamson KE, Radosevich M, Wommack KE (2005) Abundance and diversity of viruses in six Delaware soils. Appl Environ Microbiol 71:3119–3125

    PubMed  CAS  Google Scholar 

  • Xu J (2006) Microbial ecologyin the age of genomics and metagenomics:concepts, tools and recent advances. Mol Ecol 15:1713–1731

    PubMed  CAS  Google Scholar 

  • Yu Lin C, Viant MR, Tjeerdema RS (2006) Metabolomics: methodologies and applications in the environmental sciences. J Pesticide Sci 31:241–251

    Google Scholar 

  • Yuan X, Lin X, Chu H, Yin R, Zhang H, Hu J, Zhu J (2006) Effects of elevated atmospheric CO2 on soil enzyme activities at different nitrogen application treatments. Acta Ecol Sin 26:48–53

    CAS  Google Scholar 

  • Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis. New Phytol 147:201–222

    CAS  Google Scholar 

  • Zhang L, Kudo T, Takaya N, Shoun H (2002) Distribution, structure and function of fungal nitric oxide reductase P450nor – recent advances. Int Congr Ser 1233:197–202

    CAS  Google Scholar 

  • Zhang W, Parker K, Luo Y, Wan S, Wallace LL, HU S (2005) Soil microbial responses to experimental warming and clipping in a tallgrass prairie. Global Change Biol 11:266–277

    CAS  Google Scholar 

  • Zhang H-H, He P-J, Shao L-M, Yuan L (2009) Minimisation of N2O emissions from a plant-soil system under landfill leachate irrigation. Waste Manage 29:1012–1017

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Mele .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mele, P.M. (2011). Soil Biota, Soil Health and Global Change. In: Singh, B., Cowie, A., Chan, K. (eds) Soil Health and Climate Change. Soil Biology, vol 29. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20256-8_8

Download citation

Publish with us

Policies and ethics