Skip to main content

“Ab-Initio” Structure Solution of Nano-Crystalline Minerals and Synthetic Materials by Automated Electron Tomography

  • Chapter
  • First Online:
Minerals as Advanced Materials II

Abstract

Most of the newly discovered mineral phases, as well as many new synthesized industrial materials, appear only in the form of nano crystals, with a size not sufficient for single-crystal x-ray structure analysis. The development of techniques able to investigate the structure of nano crystalline materials is therefore one of the most important frontiers of crystallography. The most widespread technique providing relatively fast and well consolidated routes for structure analysis of bulk materials is x-ray powder diffraction (XRPD). Nevertheless, XRPD suffers from intrinsic 1-dimension reduction of information that greatly limits its applicability in presence of peak broadening and overlapping. Peak broadening is usually caused by very small crystallites, namely less than 50nm. Overlapping of peaks is problematic mainly for intensity integration, but in case of polyphasic mixtures or significant amount of impurities it can be critical also for cell parameter determination and reflection indexing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersson S, Wadsley AD (1962) The structures of Na2Ti6O13 and Rb2Ti6O13 and the alkali metal titanates. Acta Crystallogr 15:194–201

    Article  Google Scholar 

  • Andrusenko I, Mugnaioli E, Gorelik TE, Koll D, Panthöfer M, Tremel W, Kolb U (2011) Structure analysis of titanate nanorods by automated electron diffraction tomography. Acta Crystallogr B67:218–225

    Google Scholar 

  • Avilov A, Kuligin K, Nicolopoulos S, Nickolskiy M, Boulahya K, Portillo J, Lepeshov G, Sobolev B, Collette JP, Martin N, Robins AC, Fischione P (2007) Precession technique and electron diffractometry as new tools for crystal structure analysis and chemical bonding determination. Ultramicroscopy 107:431–444

    Article  Google Scholar 

  • Baerlocher C, Gramm F, Massüger L, McCusker LB, He Z, Hovmöller S, Zou X (2007) Structure of the polycrystalline zeolite catalyst IM-5 solved by enhanced charge flipping. Science 315:1113–1116

    Article  Google Scholar 

  • Birkel CS, Mugnaioli E, Gorelik T, Kolb U, Panthöfer M, Tremel W (2010) Solution synthesis of a new thermoelectric Zn1+xSb nanophase and its structure determination using automated electron diffraction tomography. J Am Chem Soc 132:9881–9889

    Article  Google Scholar 

  • Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Siliqi D, Spagna R (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. J Appl Crystallogr 40:609–613

    Article  Google Scholar 

  • Capitelli F, Derebe MG (2007) Single crystal X-ray diffraction study of a pure natrolite sample. J Chem Cristallogr 37:583–586

    Article  Google Scholar 

  • Cowley JM (1956) Electron-diffraction study of the structure of basic lead carbonate, 2PbCO3·Pb(OH)2. Acta Crystallogr 9:391–396

    Article  Google Scholar 

  • Cowley JM, Goodman P, Vainshtein BK, Zvyagin BB, Dorset DL (2001) Electron diffraction and electron microscopy in structure determination. In: Shmueli U (ed) International tables for crystallography, Volume B, reciprocal space, 2nd edn. Kluwer Academic, Dordrecht

    Google Scholar 

  • Denysenko D, Grzywa M, Tonigold M, Streppel B, Krkljus I, Hirscher M, Mugnaioli E, Kolb U, Hanss J, Volkmer D (2011) Elucidating gating effects for hydrogen sorption in MFU-4-type triazolate-based metal organic frameworks featuring different pore sizes. Chem Eur J 17:1837–1848

    Article  Google Scholar 

  • Dorset DL (1995) Structural electron crystallography. Plenum Press, New York

    Google Scholar 

  • Dorset DL (2007) Electron crystallography of organic materials. Ultramicroscopy 107:453–461

    Article  Google Scholar 

  • Dorset DL, Hauptman HA (1976) Direct phase determination for quasi-kinematical electron diffraction intensity data from organic microcrystals. Ultramicroscopy 1:195–201

    Article  Google Scholar 

  • Dorset DL, Roth WJ, Gilmore CJ (2005) Electron crystallography of zeolites – the MWW family as a test of direct 3D structure determination. Acta Crystallogr A61:516–527

    Google Scholar 

  • Dorset DL, Gilmore CJ, Jorda JL, Nicolopoulos S (2007) Direct electron crystallographic determination of zeolite zonal structures. Ultramicroscopy 107:462–473

    Article  Google Scholar 

  • Doyle PA, Turner PS (1968) Relativistic Hartree-Fock X-ray and electron scattering factors. Acta Crystallogr A24:390–397

    Google Scholar 

  • Gemmi M, Klein H, Rageau A, Strobel P, Le Cras F (2010) Structure solution of the new titanate Li4Ti8Ni3O21 using precession electron diffraction. Acta Crystallogr B66:60–68

    Google Scholar 

  • Gilmore CJ, Dong W, Dorset DL (2008) Solving the crystal structures of zeolites using electron diffraction data. I. The use of potential-density histograms. Acta Crystallogr A64:284–294

    Google Scholar 

  • Kisielowski C, Erni R, Freitag B (2008a) Object-defined resolution below 0.5 Å in transmission electron microscopy – recent advances on the TEAM 0.5 instrument. Microsc Microanal 14:78–79

    Google Scholar 

  • Kisielowski C, Freitag B, Bischoff M, van Lin H, Lazar S, Knippels G, Tiemeijer P, van der Stam M, von Harrach S, Stekelenburg M, Haider M, Uhlemann S, Müller H, Hartel P, Kabius B, Miller D, Petrov I, Olson EA, Donchev T, Kenik EA, Lupini AR, Bentley J, Pennycook SJ, Anderson IM, Minor AM, Shmid AK, Duden T, Radmilovic V, Ramasse QM, Watanabe M, Erni R, Stach EA, Denes P, Dahmen U (2008b) Detection of single atoms and buried defects in three dimensions by aberration– corrected electron microscope with 0.5-Å information limit. Microsc Microanal 14:469–477

    Google Scholar 

  • Kolb U, Gorelik T, Kübel C, Otten MT, Hubert D (2007) Towards automated diffraction tomography: Part I—data acquisition. Ultramicroscopy 107:507–513

    Article  Google Scholar 

  • Kolb U, Gorelik T, Otten MT (2008) Towards automated diffraction tomography. Part II—cell parameter determination. Ultramicroscopy 108:763–772

    Article  Google Scholar 

  • Kolb U, Gorelik T, Mugnaioli E (2009) Automated diffraction tomography combined with electron precession: a new tool for ab initio nanostructure analysis. In Moeck P, Hovmoeller S, Nicolopoulos S, Rouvimov S, Petrok V, Gateshki M, Fraundorf P (ed) Electron crystallography for materials research and quantitative characterization of nanostructured materials, Materials research society symposia proceedings 1184: GG01-05, Warrendale PA

    Google Scholar 

  • Kolb U, Gorelik TE, Mugnaioli E, Stewart A (2010) Structural characterization of organics using manual and automated electron diffraction. Polym Rev 50:35–409

    Article  Google Scholar 

  • Kolb U, Mugnaioli E, Gorelik TE (2011) Automated electron diffraction tomography – a new tool for nano crystal structure analysis. Cryst Res Technol 46:542–554

    Article  Google Scholar 

  • Lipson H, Cochran W (1966) The determination of crystal structures, revised and enlarged edition. Cornell University Press, Ithaca.

    Google Scholar 

  • Mugnaioli E, Gorelik T, Kolb U (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy 109:758–765

    Article  Google Scholar 

  • Nicolopoulos S, González-Calbet JM, Vallet-Regí M, Corma A, Corell C, Guil JM, Pérez-Pariente J (1995) Direct phasing in electron crystallography: Ab initio determination of a new MCM-22 zeolite structure. J Am Chem Soc 117:8947–8956

    Article  Google Scholar 

  • Pinsker ZG (1953) Electron diffraction. Butterworth, London

    Google Scholar 

  • Reimer L, Kohl H (2008) Transmission electron microscopy, physics of image formation, 5th edn. Springer, New York

    Google Scholar 

  • Rigamonti R (1936) La struttura della catena paraffinica studiata mediante i raggi di elettroni. Gazz Chim Ital 66:174–182

    Google Scholar 

  • Rozhdestvenskaya I, Mugnaioli E, Czank M, Depmeier W, Kolb U, Reinholdt A, Weirich T (2010) The structure of charoite, (K, Sr, Ba, Mn)15–16(Ca, Na)32[(Si70(O, OH)180)](OH, F)4.0 * nH2O, solved by conventional and automated electron diffraction. Miner Mag 74:159–177

    Article  Google Scholar 

  • Schömer E, Heil U, Schlitt S, Kolb U, Gorelik TE, Mugnaioli E, Stewart A (2009) ADT-3D. A software package for ADT data visualizing and processing, Institute of Computer Science. Johannes Gutenberg University, Mainz. http://www.adt.chemie.uni-mainz.de

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A64:112–122

    Google Scholar 

  • Spence JCH (2003) High-resolution electron microscopy, 3rd edn. Oxford Univeristy Press, New York

    Google Scholar 

  • Thomas JM, Terasaki O, Gai PL, Zhou W, Gonzalez-Calbet J (2001) Structural elucidation of microporous and mesoporous catalysts and molecular sieves by high-resolution electron microscopy. Acc Chem Res 34:583–594

    Article  Google Scholar 

  • Vainshtein BK (1956) Kinematic theory of intensities in electron diffraction patterns. Part 2. patterns from textures and polycrystalline aggregates. Sov Phys – Crystallogr 1:117–122

    Google Scholar 

  • Vainshtein BK (1964) Structure analysis by electron diffraction. Pergamon Press, Oxford

    Google Scholar 

  • Vincent R, Midgley PA (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy 53:271–282

    Article  Google Scholar 

  • Voigt-Martin IG, Yan DH, Yakimansky A, Schollmeyer D, Gilmore CJ, Bricogne G (1995) Structure determination by electron crystallography using both maximum-entropy and simulation approaches. Acta Crystallogr A51:849–868

    Google Scholar 

  • Wagner P, Terasaki O, Ritsch S, Nery JG, Zones SI, Davis ME, Hiraga K (1999) Electron diffraction structure solution of a nanocrystalline zeolite at atomic resolution. J Phys Chem B103:8245–8250

    Google Scholar 

  • Weirich TE, Ramlau R, Simon A, Hovmöller S, Zou X (1996) A crystal structure determined with 0.02 Å accuracy by electron microscopy. Nature 382:144–146

    Article  Google Scholar 

  • Weirich TE, Portillo J, Cox G, Hibst H, Nicolopoulos S (2006) Ab initio determination of the framework structure of the heavy-metal oxide CsxNb2.54W2.46O14 from 100 kV precession electron diffraction data. Ultramicroscopy 106:164–175

    Article  Google Scholar 

  • Williams DB, Carter CB (1996) Transmission electron microscopy. Plenum Press, New York

    Book  Google Scholar 

  • Zhukhlistov AP, Zvyagin BB (1998) Crystal structure of lizardite 1 T from electron diffraction data. Crystallogr Rep 43:950–955

    Google Scholar 

  • Zhukhlistov AP, Avilov AS, Ferraris D, Zvyagin BB, Plotnikov VP (1997) Statistical distribution of hydrogen over three positions in the brucite Mg(OH)2 structure from electron diffractometry data. Crystallogr Rep 42:774–777

    Google Scholar 

Download references

Acknowledgements

The authors thank Iryna Andrusenko, Dominik Koll, Govanna Vezzalini and Rossella Arletti for providing the samples and for useful discussion. The work was supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbereich 625. Financial support for the workshop “Minerals as Advanced Materials II” came from the Deutsche Forschungsgemeinschaft DE 412/46-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Mugnaioli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mugnaioli, E., Gorelik, T.E., Stewart, A., Kolb, U. (2011). “Ab-Initio” Structure Solution of Nano-Crystalline Minerals and Synthetic Materials by Automated Electron Tomography. In: Krivovichev, S. (eds) Minerals as Advanced Materials II. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20018-2_5

Download citation

Publish with us

Policies and ethics