Skip to main content

The Role of Ets Transcription Factors in Mediating Cellular Transformation

  • Chapter
Book cover Transcription Factors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 166))

Abstract

The Ets family of transcription factors in mouse or humans is comprised of around 27 unique family members that contain an evolutionarily conserved DNA-binding domain called the Ets domain. The Ets family includes both transcriptional activators and repressors. The normal cellular Ets transcription factors have been implicated as mediators of a wide range of cellular processes, including oncogenic transformation. This chapter provides an overview of the Ets family, and describes each of the multiple lines of evidence that Ets transcription factors are mediators of cellular transformation. This evidence includes: (a) cancers resulting from Ets factor overexpression or chromosomal translocations that generate fusion proteins containing Ets factor domains; (b) signaling from oncogenes to Ets factors; (c) expression correlation of Ets factors with tumor formation; (d) reversal of cellular transformation by dominant inhibitory Ets constructs; (e) delayed tumor development after genetic disruption of an Ets factor; and (f) the potential role of many Ets target genes in transformation. A better understanding of the role of Ets factors and their target genes in cancer should provide the basis for more specific novel therapeutic approaches for the treatment of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvand A, Denny CT (2001) Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20:5747–5754

    Article  PubMed  CAS  Google Scholar 

  • Athanasiou M, LeGallic L, Watson DK, Blair DG, Mavrothalassitis G (2000) Suppression of the Ewing’s sarcoma phenotype by FLI1/ERF repressor hybrids. Cancer Gene Ther 7:1188–1195

    Article  PubMed  CAS  Google Scholar 

  • Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M, Thomas G, Ghysdael J (1994) DNA-binding and transcriptional activation properties of the EWS-FLI-l fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 14:3230–3241

    PubMed  CAS  Google Scholar 

  • Barrett JM, Puglia MA, Singh G, Tozer RG (2002) Expression of Ets-related transcription factors and matrix metalloproteinase genes in human breast cancer cells. Breast Cancer Res Treat 72:227–232

    Article  PubMed  CAS  Google Scholar 

  • Bartel FO, Higuchi T, Spyropoulos DD (2000) Mouse models in the study of the Ets family of transcription factors. Oncogene 19:6443–6454

    Article  PubMed  CAS  Google Scholar 

  • Ben-David Y, Giddens EB, Letwin K, Bernstein A (1991) Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev 5:908–918

    Article  PubMed  CAS  Google Scholar 

  • Brunner D, Ducker K, Oellers N, Hafen E, Scholz H, Klambt C (1994) The ETS domain protein pointed-P2 is a target of MAP kinase in the sevenless signal transduction pathway. Nature 370:386–389

    Article  PubMed  CAS  Google Scholar 

  • Buijs A, van Rompaey L, Molijn AC, Davis IN, Vertegaal AC, Potter MD, Adams C, van Baal S, Zwarthoff EC, Roussel MF, Grosveld GC (2000) The MN1-TEL fusion protein, encoded by the translocation (12;22)(p13;q11) in myeloid leukemia, is a transcription factor with transforming activity. Mol Cell Biol 20:9281–9293

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti SR, Nucifora G (1999) The leukemia-associated gene TEL encodes a transcription repressor which associates with SMRT and mSin3A. Biochem Biophys Res Commun 264:871–877

    Article  PubMed  CAS  Google Scholar 

  • Chang J, Lee C, Hahm KB, Yi Y, Choi SG, Kim SJ (2000) Over-expression of ERT(ESX/ESE-1/ELF3), an ets-related transcription factor, induces endogenous TGF-beta type II receptor expression and restores the TGF-beta signaling pathway in Hs578 t human breast cancer cells. Oncogene 19:151–154

    Article  PubMed  CAS  Google Scholar 

  • Czuwara-Ladykowska J, Sementchenko VI, Watson DK, Trojanowska M (2002) Ets1 is an effector of the transforming growth factor beta (TGF-beta) signaling pathway and an antagonist of the profibrotic effects of TGF-beta. J Biol Chem 277:20399–20408

    Article  PubMed  CAS  Google Scholar 

  • de Nigris F, Mega T, Berger N, Barone MV, Santoro M, Viglietto G, Verde P, Fusco A (2001) Induction of ETS-1 and ETS-2 transcription factors is required for thyroid cell transformation. Cancer Res 61:2267–2275

    PubMed  Google Scholar 

  • Delannoy-Courdent A, Mattot V, Fafeur V, Fauquette W, Pollet I, Calmels T, Vercamer C, Boilly B, Vandenbunder B, Desbiens X (1998) The expression of an Ets1 transcription factor lacking its activation domain decreases uPA proteolytic activity and cell motility, and impairs normal tubulogenesis and cancerous scattering in mammary epithelial cells. J Cell Sci 111:1521–1534

    PubMed  CAS  Google Scholar 

  • Dittmer J (2003) The biology of the Etsl Proto-oncogene. Mol Cancer 2:29 (http://www.molecular-cancer.com/content/2/1/29)

    Article  PubMed  Google Scholar 

  • Dittmer J, Nordheim A (1998) Ets transcription factors and human disease. Biochim Biophys Acta 1377: F1–F11

    PubMed  CAS  Google Scholar 

  • Feldman RJ, Sementchenko VI, Gayed M, Fraig MM, Watson DK (2003a) Pdef expression in human breast cancer is correlated with invasive potential and altered gene expression. Cancer Res 63:4626–4631

    PubMed  CAS  Google Scholar 

  • Feldman RJ, Sementchenko VI, Watson DK (2003b) The epithelial-specific Ets factors occupy a unique position in defining epithelial proliferation, differentiation and carcinogenesis. Anticancer Res 23:2125–2131

    PubMed  CAS  Google Scholar 

  • Foos G, García-Ramírez JJ, Galang CK, Hauser CA (1998) Elevated expression of Ets2 or distinct portions of Ets2 can reverse Ras-mediated cellular transformation. J Biol Chem 273:18871–18880

    Article  PubMed  CAS  Google Scholar 

  • Foos G, Hauser CA (2000) Altered Ets transcription factor activity in prostate tumor cells inhibits anchorage-independent growth, survival, and invasiveness. Oncogene 19:5507–5516

    Article  PubMed  CAS  Google Scholar 

  • Gabay L, Scholz H, Golembo M, Klaes A, Shilo BZ, Klambt C (1996) EGF receptor signaling induces pointed P1 transcription and inactivates Yan protein in the Drosophila embryonic ventral ectoderm. Development 122:3355–3362

    PubMed  CAS  Google Scholar 

  • Galang CK, Garcia-Ramirez J, Solski PA, Westwick JK, Der CJ, Neznanov NN, Oshima RG, Hauser CA (1996) Oncogenic Neu/ErbB-2 increases ets, AP-1, and NF-kappaB-dependent gene expression, and inhibiting ets activation blocks Neu-mediated cellular transformation. J Biol Chem 271:7992–7998

    Article  PubMed  CAS  Google Scholar 

  • Galang CK, Muller WJ, Foos G, Oshima RG, Hauser CA (2004) Changes in the expression of many Ets family transcription factors and of potential target genes in normal mammary tissue and tumors. J Biol Chem 279:11281 J. Biol. Chem. 11292

    Article  PubMed  CAS  Google Scholar 

  • Ghysdael J, Boureux A (1997) The Ets family of transcriptional regulators. In: Yaniv M, Ghysdael J (eds) Oncogenes as transcriptional regulators, vo–6408

    Google Scholar 

  • Hedvat CV, Yao J, Sokolic RA, Nimer SD (2004) Myeloid ELF1-like Factor Is a Potent Activator of Interleukin-8 Expression in Hematopoietic Cells. J Biol Chem 279:6395–6400

    Article  PubMed  CAS  Google Scholar 

  • Hever A, Oshima RG, Hauser CA (2003) Ets2 is not required for Ras or Neu/ErbB-2 mediated cellular transformation in vitro. Exp Cell Res 290:132–143

    Article  PubMed  CAS  Google Scholar 

  • Hiebert SW, Lutterbach B, Amann J (200l) Role of co-repressors in transcriptional repression mediated by the t(8;21), t(16;21), t(12;2l), and inv(16) fusion proteins. Curr Opin Hematol 8:197–200

    Article  Google Scholar 

  • Higashino F, Yoshida K, Fujinaga Y, Kamio K, Fujinaga K (1993) Isolation of a cDNA encoding the adenovirus E1A enhancer binding protein: a new human member of the ets oncogene family. Nucl Acids Res 21:547–553

    Article  PubMed  CAS  Google Scholar 

  • Hsu T, Schulz RA (2000) Sequence and functional properties of Ets genes in the model organism Drosophila. Oncogene 19:6409–6416

    Article  PubMed  CAS  Google Scholar 

  • Im YH, Kim HT, Lee C, Poulin D, Welford S, Sorensen PH, Denny CT, Kim SJ (2001) EWS-FLI1, EWS-ERG, and EWS-ETV1 oncoproteins of Ewing tumor family all suppress transcription of transforming growth factor beta type II receptor gene. Cancer Res 60:1536–1540

    Google Scholar 

  • Jaishankar S, Zhang J, Roussel MF, Baker SJ (1999) Transforming activity of EWS/FLI is not strictly dependent upon DNA-binding activity. Oncogene 18:5592–5597

    Article  PubMed  CAS  Google Scholar 

  • Kaneko Y, Yoshida K, Handa M, Toyoda Y, Nishihira H, Tanaka Y, Sasaki Y, Ishida S, Higashino F, Fujinaga K (1996) Fusion of an ETS-family gene, EIAF, to EWS by t(17;22)(q12;q12) chromosome translocation in an undifferentiated sarcoma of infancy. Genes Chromosomes Cancer 15:115–121

    Article  PubMed  CAS  Google Scholar 

  • Karim FD, Urness LD, Thummel CS, Klemsz MJ, McKercher SR, Celada A, Van Beveren C, Maki RA, Gunther CV, Nye JA, al. e (1990) The ETS-domain: a new DNA-binding motif that recognizes a purine-rich core DNA sequence [letter]. Genes Dev 4:1451–1453

    Article  PubMed  CAS  Google Scholar 

  • Klambt C (1993) The Drosophila gene pointed encodes two ETS-like proteins which are involved in the development of the midline glial cells. Development 117:163–176

    PubMed  CAS  Google Scholar 

  • Klappacher GW, Lunyak VV, Sykes DB, Sawka-Verhelle D, Sage J, Brard G, Ngo SD, Gangadharan D, Jacks T, Kamps MP, Rose DW, Rosenfeld MG, Glass CK (2002) An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation. Cell 109:169–180

    Article  PubMed  CAS  Google Scholar 

  • Knezevich SR, McFadden DE, Tao W, Lim JF, Sorensen PH (1998) A novel ETV6-NTRK3 gene fusion in congenital fibrosarcoma. Nat Genet 18:184–187

    Article  PubMed  CAS  Google Scholar 

  • Knoop LL, Baker SJ (2001) EWS/FLI alters 5′-splice site selection. J Biol Chem 276:22317–22322

    Article  PubMed  CAS  Google Scholar 

  • Kovar H, Aryee DN, Jug G, Henockl C, Schemper M, Delattre O, Thomas G, Gadner H (1996) EWS/FLI-1 antagonists induce growth inhibition of Ewing tumor cells in vitro. Cell Growth Differ 7:429–437

    PubMed  CAS  Google Scholar 

  • Langer SJ, Bortner DM, Roussel MF, Sherr CJ, Ostrowski MC (1992) Mitogenic signaling by colony-stimulating factor 1 and ras is suppressed by the ets-2 DNA-binding domain and restored by myc overexpression. Mol Cell Biol 12:5355–5362

    PubMed  CAS  Google Scholar 

  • Laudet V, Hanni C, Stehelin D, Duterque-Coquillaud M (1999) Molecular phylogeny of the ETS gene family. Oncogene 18:1351–1359

    Article  PubMed  CAS  Google Scholar 

  • Le Gallic L, Sgouras D, Beal G, Jr., Mavrothalassitis G (1999) Transcriptional repressor ERF is a Ras/mitogen-activated protein kinase target that regulates cellular proliferation. Mol Cell Biol 19:4121–4133

    PubMed  Google Scholar 

  • Leprince D, Crepieux P, Stehelin D (1992) c-ets-1 DNA binding to the PEA3 motif is differentially inhibited by all the mutations found in v-ets. Oncogene 7:9–17

    PubMed  CAS  Google Scholar 

  • Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C, Stehelin D (1983) A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306:395–397

    Article  PubMed  CAS  Google Scholar 

  • Lopez RG, Carron C, Ghysdael J (2003) v-SRC Specifically Regulates the Nudeo-cytoplasmic Delocalization of the Major Isoform of TEL (ETV6). J Biol Chem 278:413164–1325

    Google Scholar 

  • Man AK, Young LJT, Tynan J, Lesperance J, Egeblad M, Werb Z, Hauser CA, Muller WJ, Cardiff RD, Oshima RG (2003) Ets2-dependent stromal regulation of mouse mammary tumors. Mol Cell Biol 23:8614–8625

    Article  PubMed  CAS  Google Scholar 

  • Maroulakou IG, Bowe DB (2000) Expression and function of Ets transcription factors in mammalian development: a regulatory network. Oncogene 19:6432–6442

    Article  PubMed  CAS  Google Scholar 

  • Mavrothalassitis G, Ghysdael J (2000) Proteins of the ETS family with transcriptional repressor activity. Oncogene 19:6524–6532

    Article  PubMed  CAS  Google Scholar 

  • McCarthy SA, Chen D, Yang B-S, Garcia-Ramfrez JJ, Cherwinski H, Chen X-R, Klagsbrun ML, Hauser CA, Ostrowski MC, McMahon M (1997) Rapid phosphorylation of Ets-2 accompanies MAP kinase activation and the induction of HB-EGF gene expression by oncogenic Raf-1. Mol Cell Biol 17:2401–2412

    PubMed  CAS  Google Scholar 

  • McLaughlin F, Ludbrook VJ, Cox J, von Carlowitz I, Brown S, Randi AM (2001) Combined genomic and antisense analysis reveals that the transcription factor Erg is implicated in endothelial cell differentiation. Blood 98:3332–3339

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331:277–280

    Article  PubMed  CAS  Google Scholar 

  • Moreau-Gachelin F, Wendling F, Molina T, Denis N, Titeux M, Grimber G, Briand P, Vainchenker W, Tavitian A (1996) Spi-1/PU.1 transgenic mice develop multistep erythroleukemias. Mol Cell Biol 16:2453–2463

    PubMed  CAS  Google Scholar 

  • Mueller BU, Pabst T, Osato M, Asou N, Johansen LM, Minden MD, Behre G, Hiddemann W, Ito Y, Tenen OG (2002) Heterozygous PU1 mutations are associated with acute myeloid leukemia. Blood 100:998–1007

    Article  PubMed  CAS  Google Scholar 

  • Neznanov N, Man AK, Yamamoto H, Hauser CA, Cardiff RD, Oshima RG (1999) A single targeted Ets2 allele restricts development of mammary tumors in transgenic mice. Cancer Res 59:4242–4246

    PubMed  CAS  Google Scholar 

  • Nunn MF, Seeburg PH, Moscovici C, Duesberg PH (1983) Tripartite structure of the avian erythroblastosis virus E26 transforming gene. Nature 306:391–395

    Article  PubMed  CAS  Google Scholar 

  • O’Neill EM, Rebay I, Tjian R, Rubin GM (1994) The activities of two Ets-related transcription factors required for Drosophila eye development are modulated by the Ras/MAPK pathway. Cell 78:137–147

    Article  PubMed  Google Scholar 

  • Oettgen P, Finger E, Sun ZJ, Akbarali Y, Thamrongsak U, Boltax J, Grall F., Dube A, Weiss A, Brown L, Quinn G, Kas K, Endress G, Kunsch C (2000) POEF,a novel prostate epithelium-specific Ets transcription factor, interacts with the androgen receptor and activates prostate-specific antigen gene expression. J Biol Chem 275:1216–1225

    Article  PubMed  CAS  Google Scholar 

  • Ohno T, Rao VN, Reddy ES (1993) EWS/Fli-1 chimeric protein is a transcriptional activator. Cancer Res 53:5859–5863

    PubMed  CAS  Google Scholar 

  • Oikawa T, Yamada T (2003) Molecular biology of the Ets family of transcription factors. Gene 303:11–34

    Article  PubMed  CAS  Google Scholar 

  • Raynaud S, Cave H, Baens M, Bastard C, Cacheux V, Grosgeorge J, Guidal-Giroux C, Guo C, Vilmer E, Marynen P, Grandchamp B (1996) The 12;21 translocation involving TEL and deletion of the other TEL allele: two frequently associated alterations found in childhood acute lymphoblastic leukemia. Blood 87:2891–2899

    PubMed  CAS  Google Scholar 

  • Sakurai T, Yamada T, Kihara-Negishi F, Teramoto S, Sato Y, Izawa T, Oikawa T (2003) Effects of overexpression of the Ets family transcription factor TEL on cell growth and differentiation of K562 cells. Int J Oncol 22:1327–1333

    PubMed  CAS  Google Scholar 

  • Sapi E, Flick MB, Rodov S, Kacinski BM (1998) Ets-2 transdominant mutant abolishes anchorage-independent growth and macrophage colony-stimulating factor-stimulated invasion by BT20 breast carcinoma cells. Cancer Res 58:1027–1033

    PubMed  CAS  Google Scholar 

  • Sato Y (2001) Role of ETS family transcription factors in vascular development and angiogenesis. [Review] [52 refs]. Cell Struct Funct 26:19–24

    Article  PubMed  CAS  Google Scholar 

  • Sementchenko VI, Schweinfest CW, Papas TS, Watson DK (1998) ETS2 function is required to maintain the transformed state of human prostate cancer cells. Oncogene 17:2883–2888

    Article  PubMed  CAS  Google Scholar 

  • Sementchenko VI, Watson OK (2000) Ets target genes: past, present and future. Oncogene 19:6533–6548

    Article  PubMed  CAS  Google Scholar 

  • Sharrocks AD (2001) The ETS-domain transcription factor family. [Review] [112 refs). Nat Rev Mol Cell Biol 2:827–837

    Article  PubMed  CAS  Google Scholar 

  • Shepherd TG, Kockeritz L, Szrajber MR, Muller WJ, Hassell JA (2001) The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis. Curr Biol 11:1739–1748

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Barrett J, Sakata K, Tozer RG, Singh G (2002) ETS proteins and MMPs: partners in invasion and metastasis. Curr. Drug Targets 3:359–367

    Article  PubMed  CAS  Google Scholar 

  • Stegmaier K, Pendse S, Barker GF, Bray-Ward P, Ward DC, Montgomery KT, Krauter KS, Reynolds C, Sklar J, Donnelly M (1995) Frequent loss of heterozygosity at the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood 86:38–44

    PubMed  CAS  Google Scholar 

  • Suzuki H, Romano-Spica V, Papas TS, Bhat NK (1995) ETS1 suppresses tumorigenicity of human colon cancer cells. Proc Natl Acad Sci USA 92:4442–4446

    Article  PubMed  CAS  Google Scholar 

  • Tan PB, Lackner MR, Kim SK (1998) MAP kinase signaling specificity mediated by the LIN-1 Ets/LIN-31 WH transcription factor complex during C. elegans vulval induction. Cell 93:569–580

    Article  PubMed  CAS  Google Scholar 

  • Teruyama K, Abe M, Nakano T, Takahashi S, Yamada S, Sato Y (2001) Neurophilin-1 is a downstream target of transcription factor Ets-1 in human umbilical vein endothelial cells. FEBS Lett 504:1–4

    Article  PubMed  CAS  Google Scholar 

  • Tsokos GC, Nambiar MP, Juang YT (2003) Activation of the Ets transcription factor Elf-1 requires phosphorylation and glycosylation: defective expression of activated Elf-1 is involved in the decreased TCR zeta chain gene expression in patients with systemic lupus erythematosus. Ann NY Acad Sci 987:240–245

    Article  PubMed  CAS  Google Scholar 

  • Tugores A, Le J, Sorokina I, Snijders AJ, Duyao M, Reddy PS, Carlee L, Ronshaugen M, Mushegian A, Watanaskul T, Chu S, Buckler A, Emtage S, McCormick MK (2001) The epithelium-specific ETS protein EHF/ESE-3 is a context-dependent transcriptional repressor downstream of MAPK signaling cascades. J Biol Chem 276:20397–20406

    Article  PubMed  CAS  Google Scholar 

  • Verger A, Duterque-Coquillaud M (2002) When Ets transcription factors meet their partners. Bioessays 24:362–370

    Article  PubMed  CAS  Google Scholar 

  • Wang SC, Hung MC (2000) Transcriptional targeting of the HER-2/neu oncogene. Drugs Today 36:835–843

    PubMed  CAS  Google Scholar 

  • Wasylyk B, Hagman J, Gutierrez-Hartmann A (1998) Ets transcription factors — nuclear effectors of the Ras-MAP-kinase signaling pathway [review]. Trends Biochem Sci 23:213–216

    Article  PubMed  CAS  Google Scholar 

  • Welford SM, Hebert SP, Deneen B, Arvand A, Denny CT (2001) DNA binding domain-independent pathways are involved in EWS/FLI1-mediated oncogenesis. J Biol Chem 276:41977–41984

    Article  PubMed  CAS  Google Scholar 

  • Wood LD, Irvin BJ, Nucifora G, Luce KS, Hiebert SW (2003) Small ubiquitin-like modifier conjugation regulates nuclear export of TEL, a putative tumor suppressor. Proc Natl Acad Sci USA 100:3257–3262

    Article  PubMed  CAS  Google Scholar 

  • Xin JH, Cowie A, Lachance P, Hassell JA (1992) Molecular cloning and characterization of PEA3, a new member of the Ets oncogene family that is differentially expressed in mouse embryonic cells. Genes Dev 6:481–496

    Article  PubMed  CAS  Google Scholar 

  • Xing X, Wang SC, Xia W, Zou Y, Shao R, Kwong KY, Yu Z, Zhang S, Miller S, Huang L, Hung MC (2000) The ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis. Nat Med 6:189–195

    Article  PubMed  CAS  Google Scholar 

  • Xuan Z, McCombie WR, Zhang MQ (2002) GFScan: a gene family search tool at genomic DNA level. Genome Res 12:1142–1149

    PubMed  CAS  Google Scholar 

  • Yagasaki F, Wakao D, Yokoyama Y, Uchida Y, Murohashi I, Kayano H, Taniwaki M, Matsuda A, Bessho M (2001) Fusion of ETV6 to fibroblast growth factor receptor 3 in peripheral T-cell lymphoma with a t(4;12)(p16;p13) chromosomal translocation. Cancer Res 61: 8371–8374

    PubMed  CAS  Google Scholar 

  • Yamada T, Abe M, Higashi T, Yamamoto H, Kihara-Negishi F, Sakurai T, Shirai T, Oikawa T (2001) Lineage switch induced by overexpression of Ets family transcription factor PD.1 in murine erythroleukemia cells. Blood 97:2300–2307

    Article  PubMed  CAS  Google Scholar 

  • Yang B-S, Hauser CA, Henkel G, Colman MS, Van Beveren C, Stacey KJ, Hume DA, Maki RA, Ostrowski MC (1996) Ras-mediated phosphorylation of a conserved threonine residue enhances the transactivation activities of c-Ets1 and c-Ets2. Mol Cell Biol 16:538–547

    PubMed  CAS  Google Scholar 

  • Yordy JS, Muise-Helmericks RC (2000) Signal transduction and the Ets family of transcription factors. Oncogene 19:6503–6513

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Eddy A, Teng YT, Fritzler M, Kluppel M, Melet F, Bernstein A (1995) An immunological renal disease in transgenic mice that overexpress Fli-1, a member of the ets family of transcription factor genes. Mol Cell Biol 15:6961–6970

    PubMed  CAS  Google Scholar 

  • Zhou J, Ng AY, Tymms MJ, Jerrniin LS, Seth AK, Thomas RS, Kola I (1998) A novel transcription factor, ELF5, belongs to the ELF subfamily of ETS genes and maps to human chromosome 11p13–15, a region subject to LOH and rearrangement in human carcinoma cell lines. Oncogene 17:2719–2732

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag

About this chapter

Cite this chapter

Foos, G., Hauser, C.A. (2004). The Role of Ets Transcription Factors in Mediating Cellular Transformation. In: Gossen, M., Kaufmann, J., Triezenberg, S.J. (eds) Transcription Factors. Handbook of Experimental Pharmacology, vol 166. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18932-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18932-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62361-5

  • Online ISBN: 978-3-642-18932-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics